|
|
|
from __future__ import division |
|
|
|
import numpy as np |
|
|
|
from annotator.uniformer.mmcv.image import rgb2bgr |
|
from annotator.uniformer.mmcv.video import flowread |
|
from .image import imshow |
|
|
|
|
|
def flowshow(flow, win_name='', wait_time=0): |
|
"""Show optical flow. |
|
|
|
Args: |
|
flow (ndarray or str): The optical flow to be displayed. |
|
win_name (str): The window name. |
|
wait_time (int): Value of waitKey param. |
|
""" |
|
flow = flowread(flow) |
|
flow_img = flow2rgb(flow) |
|
imshow(rgb2bgr(flow_img), win_name, wait_time) |
|
|
|
|
|
def flow2rgb(flow, color_wheel=None, unknown_thr=1e6): |
|
"""Convert flow map to RGB image. |
|
|
|
Args: |
|
flow (ndarray): Array of optical flow. |
|
color_wheel (ndarray or None): Color wheel used to map flow field to |
|
RGB colorspace. Default color wheel will be used if not specified. |
|
unknown_thr (str): Values above this threshold will be marked as |
|
unknown and thus ignored. |
|
|
|
Returns: |
|
ndarray: RGB image that can be visualized. |
|
""" |
|
assert flow.ndim == 3 and flow.shape[-1] == 2 |
|
if color_wheel is None: |
|
color_wheel = make_color_wheel() |
|
assert color_wheel.ndim == 2 and color_wheel.shape[1] == 3 |
|
num_bins = color_wheel.shape[0] |
|
|
|
dx = flow[:, :, 0].copy() |
|
dy = flow[:, :, 1].copy() |
|
|
|
ignore_inds = ( |
|
np.isnan(dx) | np.isnan(dy) | (np.abs(dx) > unknown_thr) | |
|
(np.abs(dy) > unknown_thr)) |
|
dx[ignore_inds] = 0 |
|
dy[ignore_inds] = 0 |
|
|
|
rad = np.sqrt(dx**2 + dy**2) |
|
if np.any(rad > np.finfo(float).eps): |
|
max_rad = np.max(rad) |
|
dx /= max_rad |
|
dy /= max_rad |
|
|
|
rad = np.sqrt(dx**2 + dy**2) |
|
angle = np.arctan2(-dy, -dx) / np.pi |
|
|
|
bin_real = (angle + 1) / 2 * (num_bins - 1) |
|
bin_left = np.floor(bin_real).astype(int) |
|
bin_right = (bin_left + 1) % num_bins |
|
w = (bin_real - bin_left.astype(np.float32))[..., None] |
|
flow_img = (1 - |
|
w) * color_wheel[bin_left, :] + w * color_wheel[bin_right, :] |
|
small_ind = rad <= 1 |
|
flow_img[small_ind] = 1 - rad[small_ind, None] * (1 - flow_img[small_ind]) |
|
flow_img[np.logical_not(small_ind)] *= 0.75 |
|
|
|
flow_img[ignore_inds, :] = 0 |
|
|
|
return flow_img |
|
|
|
|
|
def make_color_wheel(bins=None): |
|
"""Build a color wheel. |
|
|
|
Args: |
|
bins(list or tuple, optional): Specify the number of bins for each |
|
color range, corresponding to six ranges: red -> yellow, |
|
yellow -> green, green -> cyan, cyan -> blue, blue -> magenta, |
|
magenta -> red. [15, 6, 4, 11, 13, 6] is used for default |
|
(see Middlebury). |
|
|
|
Returns: |
|
ndarray: Color wheel of shape (total_bins, 3). |
|
""" |
|
if bins is None: |
|
bins = [15, 6, 4, 11, 13, 6] |
|
assert len(bins) == 6 |
|
|
|
RY, YG, GC, CB, BM, MR = tuple(bins) |
|
|
|
ry = [1, np.arange(RY) / RY, 0] |
|
yg = [1 - np.arange(YG) / YG, 1, 0] |
|
gc = [0, 1, np.arange(GC) / GC] |
|
cb = [0, 1 - np.arange(CB) / CB, 1] |
|
bm = [np.arange(BM) / BM, 0, 1] |
|
mr = [1, 0, 1 - np.arange(MR) / MR] |
|
|
|
num_bins = RY + YG + GC + CB + BM + MR |
|
|
|
color_wheel = np.zeros((3, num_bins), dtype=np.float32) |
|
|
|
col = 0 |
|
for i, color in enumerate([ry, yg, gc, cb, bm, mr]): |
|
for j in range(3): |
|
color_wheel[j, col:col + bins[i]] = color[j] |
|
col += bins[i] |
|
|
|
return color_wheel.T |
|
|