|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.autograd import Function |
|
from torch.autograd.function import once_differentiable |
|
from torch.nn.modules.utils import _pair |
|
|
|
from ..utils import deprecated_api_warning, ext_loader |
|
|
|
ext_module = ext_loader.load_ext('_ext', |
|
['roi_align_forward', 'roi_align_backward']) |
|
|
|
|
|
class RoIAlignFunction(Function): |
|
|
|
@staticmethod |
|
def symbolic(g, input, rois, output_size, spatial_scale, sampling_ratio, |
|
pool_mode, aligned): |
|
from ..onnx import is_custom_op_loaded |
|
has_custom_op = is_custom_op_loaded() |
|
if has_custom_op: |
|
return g.op( |
|
'mmcv::MMCVRoiAlign', |
|
input, |
|
rois, |
|
output_height_i=output_size[0], |
|
output_width_i=output_size[1], |
|
spatial_scale_f=spatial_scale, |
|
sampling_ratio_i=sampling_ratio, |
|
mode_s=pool_mode, |
|
aligned_i=aligned) |
|
else: |
|
from torch.onnx.symbolic_opset9 import sub, squeeze |
|
from torch.onnx.symbolic_helper import _slice_helper |
|
from torch.onnx import TensorProtoDataType |
|
|
|
batch_indices = _slice_helper( |
|
g, rois, axes=[1], starts=[0], ends=[1]) |
|
batch_indices = squeeze(g, batch_indices, 1) |
|
batch_indices = g.op( |
|
'Cast', batch_indices, to_i=TensorProtoDataType.INT64) |
|
|
|
rois = _slice_helper(g, rois, axes=[1], starts=[1], ends=[5]) |
|
if aligned: |
|
|
|
aligned_offset = g.op( |
|
'Constant', |
|
value_t=torch.tensor([0.5 / spatial_scale], |
|
dtype=torch.float32)) |
|
rois = sub(g, rois, aligned_offset) |
|
|
|
return g.op( |
|
'RoiAlign', |
|
input, |
|
rois, |
|
batch_indices, |
|
output_height_i=output_size[0], |
|
output_width_i=output_size[1], |
|
spatial_scale_f=spatial_scale, |
|
sampling_ratio_i=max(0, sampling_ratio), |
|
mode_s=pool_mode) |
|
|
|
@staticmethod |
|
def forward(ctx, |
|
input, |
|
rois, |
|
output_size, |
|
spatial_scale=1.0, |
|
sampling_ratio=0, |
|
pool_mode='avg', |
|
aligned=True): |
|
ctx.output_size = _pair(output_size) |
|
ctx.spatial_scale = spatial_scale |
|
ctx.sampling_ratio = sampling_ratio |
|
assert pool_mode in ('max', 'avg') |
|
ctx.pool_mode = 0 if pool_mode == 'max' else 1 |
|
ctx.aligned = aligned |
|
ctx.input_shape = input.size() |
|
|
|
assert rois.size(1) == 5, 'RoI must be (idx, x1, y1, x2, y2)!' |
|
|
|
output_shape = (rois.size(0), input.size(1), ctx.output_size[0], |
|
ctx.output_size[1]) |
|
output = input.new_zeros(output_shape) |
|
if ctx.pool_mode == 0: |
|
argmax_y = input.new_zeros(output_shape) |
|
argmax_x = input.new_zeros(output_shape) |
|
else: |
|
argmax_y = input.new_zeros(0) |
|
argmax_x = input.new_zeros(0) |
|
|
|
ext_module.roi_align_forward( |
|
input, |
|
rois, |
|
output, |
|
argmax_y, |
|
argmax_x, |
|
aligned_height=ctx.output_size[0], |
|
aligned_width=ctx.output_size[1], |
|
spatial_scale=ctx.spatial_scale, |
|
sampling_ratio=ctx.sampling_ratio, |
|
pool_mode=ctx.pool_mode, |
|
aligned=ctx.aligned) |
|
|
|
ctx.save_for_backward(rois, argmax_y, argmax_x) |
|
return output |
|
|
|
@staticmethod |
|
@once_differentiable |
|
def backward(ctx, grad_output): |
|
rois, argmax_y, argmax_x = ctx.saved_tensors |
|
grad_input = grad_output.new_zeros(ctx.input_shape) |
|
|
|
grad_output = grad_output.contiguous() |
|
ext_module.roi_align_backward( |
|
grad_output, |
|
rois, |
|
argmax_y, |
|
argmax_x, |
|
grad_input, |
|
aligned_height=ctx.output_size[0], |
|
aligned_width=ctx.output_size[1], |
|
spatial_scale=ctx.spatial_scale, |
|
sampling_ratio=ctx.sampling_ratio, |
|
pool_mode=ctx.pool_mode, |
|
aligned=ctx.aligned) |
|
return grad_input, None, None, None, None, None, None |
|
|
|
|
|
roi_align = RoIAlignFunction.apply |
|
|
|
|
|
class RoIAlign(nn.Module): |
|
"""RoI align pooling layer. |
|
|
|
Args: |
|
output_size (tuple): h, w |
|
spatial_scale (float): scale the input boxes by this number |
|
sampling_ratio (int): number of inputs samples to take for each |
|
output sample. 0 to take samples densely for current models. |
|
pool_mode (str, 'avg' or 'max'): pooling mode in each bin. |
|
aligned (bool): if False, use the legacy implementation in |
|
MMDetection. If True, align the results more perfectly. |
|
use_torchvision (bool): whether to use roi_align from torchvision. |
|
|
|
Note: |
|
The implementation of RoIAlign when aligned=True is modified from |
|
https://github.com/facebookresearch/detectron2/ |
|
|
|
The meaning of aligned=True: |
|
|
|
Given a continuous coordinate c, its two neighboring pixel |
|
indices (in our pixel model) are computed by floor(c - 0.5) and |
|
ceil(c - 0.5). For example, c=1.3 has pixel neighbors with discrete |
|
indices [0] and [1] (which are sampled from the underlying signal |
|
at continuous coordinates 0.5 and 1.5). But the original roi_align |
|
(aligned=False) does not subtract the 0.5 when computing |
|
neighboring pixel indices and therefore it uses pixels with a |
|
slightly incorrect alignment (relative to our pixel model) when |
|
performing bilinear interpolation. |
|
|
|
With `aligned=True`, |
|
we first appropriately scale the ROI and then shift it by -0.5 |
|
prior to calling roi_align. This produces the correct neighbors; |
|
|
|
The difference does not make a difference to the model's |
|
performance if ROIAlign is used together with conv layers. |
|
""" |
|
|
|
@deprecated_api_warning( |
|
{ |
|
'out_size': 'output_size', |
|
'sample_num': 'sampling_ratio' |
|
}, |
|
cls_name='RoIAlign') |
|
def __init__(self, |
|
output_size, |
|
spatial_scale=1.0, |
|
sampling_ratio=0, |
|
pool_mode='avg', |
|
aligned=True, |
|
use_torchvision=False): |
|
super(RoIAlign, self).__init__() |
|
|
|
self.output_size = _pair(output_size) |
|
self.spatial_scale = float(spatial_scale) |
|
self.sampling_ratio = int(sampling_ratio) |
|
self.pool_mode = pool_mode |
|
self.aligned = aligned |
|
self.use_torchvision = use_torchvision |
|
|
|
def forward(self, input, rois): |
|
""" |
|
Args: |
|
input: NCHW images |
|
rois: Bx5 boxes. First column is the index into N.\ |
|
The other 4 columns are xyxy. |
|
""" |
|
if self.use_torchvision: |
|
from torchvision.ops import roi_align as tv_roi_align |
|
if 'aligned' in tv_roi_align.__code__.co_varnames: |
|
return tv_roi_align(input, rois, self.output_size, |
|
self.spatial_scale, self.sampling_ratio, |
|
self.aligned) |
|
else: |
|
if self.aligned: |
|
rois -= rois.new_tensor([0.] + |
|
[0.5 / self.spatial_scale] * 4) |
|
return tv_roi_align(input, rois, self.output_size, |
|
self.spatial_scale, self.sampling_ratio) |
|
else: |
|
return roi_align(input, rois, self.output_size, self.spatial_scale, |
|
self.sampling_ratio, self.pool_mode, self.aligned) |
|
|
|
def __repr__(self): |
|
s = self.__class__.__name__ |
|
s += f'(output_size={self.output_size}, ' |
|
s += f'spatial_scale={self.spatial_scale}, ' |
|
s += f'sampling_ratio={self.sampling_ratio}, ' |
|
s += f'pool_mode={self.pool_mode}, ' |
|
s += f'aligned={self.aligned}, ' |
|
s += f'use_torchvision={self.use_torchvision})' |
|
return s |
|
|