|
|
|
import logging |
|
|
|
import torch.nn as nn |
|
|
|
from .utils import constant_init, kaiming_init, normal_init |
|
|
|
|
|
def conv3x3(in_planes, out_planes, dilation=1): |
|
"""3x3 convolution with padding.""" |
|
return nn.Conv2d( |
|
in_planes, |
|
out_planes, |
|
kernel_size=3, |
|
padding=dilation, |
|
dilation=dilation) |
|
|
|
|
|
def make_vgg_layer(inplanes, |
|
planes, |
|
num_blocks, |
|
dilation=1, |
|
with_bn=False, |
|
ceil_mode=False): |
|
layers = [] |
|
for _ in range(num_blocks): |
|
layers.append(conv3x3(inplanes, planes, dilation)) |
|
if with_bn: |
|
layers.append(nn.BatchNorm2d(planes)) |
|
layers.append(nn.ReLU(inplace=True)) |
|
inplanes = planes |
|
layers.append(nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=ceil_mode)) |
|
|
|
return layers |
|
|
|
|
|
class VGG(nn.Module): |
|
"""VGG backbone. |
|
|
|
Args: |
|
depth (int): Depth of vgg, from {11, 13, 16, 19}. |
|
with_bn (bool): Use BatchNorm or not. |
|
num_classes (int): number of classes for classification. |
|
num_stages (int): VGG stages, normally 5. |
|
dilations (Sequence[int]): Dilation of each stage. |
|
out_indices (Sequence[int]): Output from which stages. |
|
frozen_stages (int): Stages to be frozen (all param fixed). -1 means |
|
not freezing any parameters. |
|
bn_eval (bool): Whether to set BN layers as eval mode, namely, freeze |
|
running stats (mean and var). |
|
bn_frozen (bool): Whether to freeze weight and bias of BN layers. |
|
""" |
|
|
|
arch_settings = { |
|
11: (1, 1, 2, 2, 2), |
|
13: (2, 2, 2, 2, 2), |
|
16: (2, 2, 3, 3, 3), |
|
19: (2, 2, 4, 4, 4) |
|
} |
|
|
|
def __init__(self, |
|
depth, |
|
with_bn=False, |
|
num_classes=-1, |
|
num_stages=5, |
|
dilations=(1, 1, 1, 1, 1), |
|
out_indices=(0, 1, 2, 3, 4), |
|
frozen_stages=-1, |
|
bn_eval=True, |
|
bn_frozen=False, |
|
ceil_mode=False, |
|
with_last_pool=True): |
|
super(VGG, self).__init__() |
|
if depth not in self.arch_settings: |
|
raise KeyError(f'invalid depth {depth} for vgg') |
|
assert num_stages >= 1 and num_stages <= 5 |
|
stage_blocks = self.arch_settings[depth] |
|
self.stage_blocks = stage_blocks[:num_stages] |
|
assert len(dilations) == num_stages |
|
assert max(out_indices) <= num_stages |
|
|
|
self.num_classes = num_classes |
|
self.out_indices = out_indices |
|
self.frozen_stages = frozen_stages |
|
self.bn_eval = bn_eval |
|
self.bn_frozen = bn_frozen |
|
|
|
self.inplanes = 3 |
|
start_idx = 0 |
|
vgg_layers = [] |
|
self.range_sub_modules = [] |
|
for i, num_blocks in enumerate(self.stage_blocks): |
|
num_modules = num_blocks * (2 + with_bn) + 1 |
|
end_idx = start_idx + num_modules |
|
dilation = dilations[i] |
|
planes = 64 * 2**i if i < 4 else 512 |
|
vgg_layer = make_vgg_layer( |
|
self.inplanes, |
|
planes, |
|
num_blocks, |
|
dilation=dilation, |
|
with_bn=with_bn, |
|
ceil_mode=ceil_mode) |
|
vgg_layers.extend(vgg_layer) |
|
self.inplanes = planes |
|
self.range_sub_modules.append([start_idx, end_idx]) |
|
start_idx = end_idx |
|
if not with_last_pool: |
|
vgg_layers.pop(-1) |
|
self.range_sub_modules[-1][1] -= 1 |
|
self.module_name = 'features' |
|
self.add_module(self.module_name, nn.Sequential(*vgg_layers)) |
|
|
|
if self.num_classes > 0: |
|
self.classifier = nn.Sequential( |
|
nn.Linear(512 * 7 * 7, 4096), |
|
nn.ReLU(True), |
|
nn.Dropout(), |
|
nn.Linear(4096, 4096), |
|
nn.ReLU(True), |
|
nn.Dropout(), |
|
nn.Linear(4096, num_classes), |
|
) |
|
|
|
def init_weights(self, pretrained=None): |
|
if isinstance(pretrained, str): |
|
logger = logging.getLogger() |
|
from ..runner import load_checkpoint |
|
load_checkpoint(self, pretrained, strict=False, logger=logger) |
|
elif pretrained is None: |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
kaiming_init(m) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
constant_init(m, 1) |
|
elif isinstance(m, nn.Linear): |
|
normal_init(m, std=0.01) |
|
else: |
|
raise TypeError('pretrained must be a str or None') |
|
|
|
def forward(self, x): |
|
outs = [] |
|
vgg_layers = getattr(self, self.module_name) |
|
for i in range(len(self.stage_blocks)): |
|
for j in range(*self.range_sub_modules[i]): |
|
vgg_layer = vgg_layers[j] |
|
x = vgg_layer(x) |
|
if i in self.out_indices: |
|
outs.append(x) |
|
if self.num_classes > 0: |
|
x = x.view(x.size(0), -1) |
|
x = self.classifier(x) |
|
outs.append(x) |
|
if len(outs) == 1: |
|
return outs[0] |
|
else: |
|
return tuple(outs) |
|
|
|
def train(self, mode=True): |
|
super(VGG, self).train(mode) |
|
if self.bn_eval: |
|
for m in self.modules(): |
|
if isinstance(m, nn.BatchNorm2d): |
|
m.eval() |
|
if self.bn_frozen: |
|
for params in m.parameters(): |
|
params.requires_grad = False |
|
vgg_layers = getattr(self, self.module_name) |
|
if mode and self.frozen_stages >= 0: |
|
for i in range(self.frozen_stages): |
|
for j in range(*self.range_sub_modules[i]): |
|
mod = vgg_layers[j] |
|
mod.eval() |
|
for param in mod.parameters(): |
|
param.requires_grad = False |
|
|