|
import os |
|
import sys |
|
import torch |
|
import torch.nn as nn |
|
import torch.utils.model_zoo as model_zoo |
|
from torch.nn import functional as F |
|
|
|
|
|
class BlockTypeA(nn.Module): |
|
def __init__(self, in_c1, in_c2, out_c1, out_c2, upscale = True): |
|
super(BlockTypeA, self).__init__() |
|
self.conv1 = nn.Sequential( |
|
nn.Conv2d(in_c2, out_c2, kernel_size=1), |
|
nn.BatchNorm2d(out_c2), |
|
nn.ReLU(inplace=True) |
|
) |
|
self.conv2 = nn.Sequential( |
|
nn.Conv2d(in_c1, out_c1, kernel_size=1), |
|
nn.BatchNorm2d(out_c1), |
|
nn.ReLU(inplace=True) |
|
) |
|
self.upscale = upscale |
|
|
|
def forward(self, a, b): |
|
b = self.conv1(b) |
|
a = self.conv2(a) |
|
if self.upscale: |
|
b = F.interpolate(b, scale_factor=2.0, mode='bilinear', align_corners=True) |
|
return torch.cat((a, b), dim=1) |
|
|
|
|
|
class BlockTypeB(nn.Module): |
|
def __init__(self, in_c, out_c): |
|
super(BlockTypeB, self).__init__() |
|
self.conv1 = nn.Sequential( |
|
nn.Conv2d(in_c, in_c, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(in_c), |
|
nn.ReLU() |
|
) |
|
self.conv2 = nn.Sequential( |
|
nn.Conv2d(in_c, out_c, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(out_c), |
|
nn.ReLU() |
|
) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) + x |
|
x = self.conv2(x) |
|
return x |
|
|
|
class BlockTypeC(nn.Module): |
|
def __init__(self, in_c, out_c): |
|
super(BlockTypeC, self).__init__() |
|
self.conv1 = nn.Sequential( |
|
nn.Conv2d(in_c, in_c, kernel_size=3, padding=5, dilation=5), |
|
nn.BatchNorm2d(in_c), |
|
nn.ReLU() |
|
) |
|
self.conv2 = nn.Sequential( |
|
nn.Conv2d(in_c, in_c, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(in_c), |
|
nn.ReLU() |
|
) |
|
self.conv3 = nn.Conv2d(in_c, out_c, kernel_size=1) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.conv2(x) |
|
x = self.conv3(x) |
|
return x |
|
|
|
def _make_divisible(v, divisor, min_value=None): |
|
""" |
|
This function is taken from the original tf repo. |
|
It ensures that all layers have a channel number that is divisible by 8 |
|
It can be seen here: |
|
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py |
|
:param v: |
|
:param divisor: |
|
:param min_value: |
|
:return: |
|
""" |
|
if min_value is None: |
|
min_value = divisor |
|
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) |
|
|
|
if new_v < 0.9 * v: |
|
new_v += divisor |
|
return new_v |
|
|
|
|
|
class ConvBNReLU(nn.Sequential): |
|
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1): |
|
self.channel_pad = out_planes - in_planes |
|
self.stride = stride |
|
|
|
|
|
|
|
if stride == 2: |
|
padding = 0 |
|
else: |
|
padding = (kernel_size - 1) // 2 |
|
|
|
super(ConvBNReLU, self).__init__( |
|
nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False), |
|
nn.BatchNorm2d(out_planes), |
|
nn.ReLU6(inplace=True) |
|
) |
|
self.max_pool = nn.MaxPool2d(kernel_size=stride, stride=stride) |
|
|
|
|
|
def forward(self, x): |
|
|
|
if self.stride == 2: |
|
x = F.pad(x, (0, 1, 0, 1), "constant", 0) |
|
|
|
|
|
for module in self: |
|
if not isinstance(module, nn.MaxPool2d): |
|
x = module(x) |
|
return x |
|
|
|
|
|
class InvertedResidual(nn.Module): |
|
def __init__(self, inp, oup, stride, expand_ratio): |
|
super(InvertedResidual, self).__init__() |
|
self.stride = stride |
|
assert stride in [1, 2] |
|
|
|
hidden_dim = int(round(inp * expand_ratio)) |
|
self.use_res_connect = self.stride == 1 and inp == oup |
|
|
|
layers = [] |
|
if expand_ratio != 1: |
|
|
|
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1)) |
|
layers.extend([ |
|
|
|
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim), |
|
|
|
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), |
|
nn.BatchNorm2d(oup), |
|
]) |
|
self.conv = nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
if self.use_res_connect: |
|
return x + self.conv(x) |
|
else: |
|
return self.conv(x) |
|
|
|
|
|
class MobileNetV2(nn.Module): |
|
def __init__(self, pretrained=True): |
|
""" |
|
MobileNet V2 main class |
|
Args: |
|
num_classes (int): Number of classes |
|
width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount |
|
inverted_residual_setting: Network structure |
|
round_nearest (int): Round the number of channels in each layer to be a multiple of this number |
|
Set to 1 to turn off rounding |
|
block: Module specifying inverted residual building block for mobilenet |
|
""" |
|
super(MobileNetV2, self).__init__() |
|
|
|
block = InvertedResidual |
|
input_channel = 32 |
|
last_channel = 1280 |
|
width_mult = 1.0 |
|
round_nearest = 8 |
|
|
|
inverted_residual_setting = [ |
|
|
|
[1, 16, 1, 1], |
|
[6, 24, 2, 2], |
|
[6, 32, 3, 2], |
|
[6, 64, 4, 2], |
|
[6, 96, 3, 1], |
|
|
|
|
|
] |
|
|
|
|
|
if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4: |
|
raise ValueError("inverted_residual_setting should be non-empty " |
|
"or a 4-element list, got {}".format(inverted_residual_setting)) |
|
|
|
|
|
input_channel = _make_divisible(input_channel * width_mult, round_nearest) |
|
self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest) |
|
features = [ConvBNReLU(4, input_channel, stride=2)] |
|
|
|
for t, c, n, s in inverted_residual_setting: |
|
output_channel = _make_divisible(c * width_mult, round_nearest) |
|
for i in range(n): |
|
stride = s if i == 0 else 1 |
|
features.append(block(input_channel, output_channel, stride, expand_ratio=t)) |
|
input_channel = output_channel |
|
|
|
self.features = nn.Sequential(*features) |
|
self.fpn_selected = [1, 3, 6, 10, 13] |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode='fan_out') |
|
if m.bias is not None: |
|
nn.init.zeros_(m.bias) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.ones_(m.weight) |
|
nn.init.zeros_(m.bias) |
|
elif isinstance(m, nn.Linear): |
|
nn.init.normal_(m.weight, 0, 0.01) |
|
nn.init.zeros_(m.bias) |
|
if pretrained: |
|
self._load_pretrained_model() |
|
|
|
def _forward_impl(self, x): |
|
|
|
|
|
fpn_features = [] |
|
for i, f in enumerate(self.features): |
|
if i > self.fpn_selected[-1]: |
|
break |
|
x = f(x) |
|
if i in self.fpn_selected: |
|
fpn_features.append(x) |
|
|
|
c1, c2, c3, c4, c5 = fpn_features |
|
return c1, c2, c3, c4, c5 |
|
|
|
|
|
def forward(self, x): |
|
return self._forward_impl(x) |
|
|
|
def _load_pretrained_model(self): |
|
pretrain_dict = model_zoo.load_url('https://download.pytorch.org/models/mobilenet_v2-b0353104.pth') |
|
model_dict = {} |
|
state_dict = self.state_dict() |
|
for k, v in pretrain_dict.items(): |
|
if k in state_dict: |
|
model_dict[k] = v |
|
state_dict.update(model_dict) |
|
self.load_state_dict(state_dict) |
|
|
|
|
|
class MobileV2_MLSD_Large(nn.Module): |
|
def __init__(self): |
|
super(MobileV2_MLSD_Large, self).__init__() |
|
|
|
self.backbone = MobileNetV2(pretrained=False) |
|
|
|
self.block15 = BlockTypeA(in_c1= 64, in_c2= 96, |
|
out_c1= 64, out_c2=64, |
|
upscale=False) |
|
self.block16 = BlockTypeB(128, 64) |
|
|
|
|
|
self.block17 = BlockTypeA(in_c1 = 32, in_c2 = 64, |
|
out_c1= 64, out_c2= 64) |
|
self.block18 = BlockTypeB(128, 64) |
|
|
|
|
|
self.block19 = BlockTypeA(in_c1=24, in_c2=64, |
|
out_c1=64, out_c2=64) |
|
self.block20 = BlockTypeB(128, 64) |
|
|
|
|
|
self.block21 = BlockTypeA(in_c1=16, in_c2=64, |
|
out_c1=64, out_c2=64) |
|
self.block22 = BlockTypeB(128, 64) |
|
|
|
self.block23 = BlockTypeC(64, 16) |
|
|
|
def forward(self, x): |
|
c1, c2, c3, c4, c5 = self.backbone(x) |
|
|
|
x = self.block15(c4, c5) |
|
x = self.block16(x) |
|
|
|
x = self.block17(c3, x) |
|
x = self.block18(x) |
|
|
|
x = self.block19(c2, x) |
|
x = self.block20(x) |
|
|
|
x = self.block21(c1, x) |
|
x = self.block22(x) |
|
x = self.block23(x) |
|
x = x[:, 7:, :, :] |
|
|
|
return x |