File size: 3,725 Bytes
45b4aa7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
# Copyright (c) OpenMMLab. All rights reserved.
# modified from
# https://github.com/Megvii-BaseDetection/cvpods/blob/master/cvpods/layers/border_align.py
import torch
import torch.nn as nn
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from ..utils import ext_loader
ext_module = ext_loader.load_ext(
'_ext', ['border_align_forward', 'border_align_backward'])
class BorderAlignFunction(Function):
@staticmethod
def symbolic(g, input, boxes, pool_size):
return g.op(
'mmcv::MMCVBorderAlign', input, boxes, pool_size_i=pool_size)
@staticmethod
def forward(ctx, input, boxes, pool_size):
ctx.pool_size = pool_size
ctx.input_shape = input.size()
assert boxes.ndim == 3, 'boxes must be with shape [B, H*W, 4]'
assert boxes.size(2) == 4, \
'the last dimension of boxes must be (x1, y1, x2, y2)'
assert input.size(1) % 4 == 0, \
'the channel for input feature must be divisible by factor 4'
# [B, C//4, H*W, 4]
output_shape = (input.size(0), input.size(1) // 4, boxes.size(1), 4)
output = input.new_zeros(output_shape)
# `argmax_idx` only used for backward
argmax_idx = input.new_zeros(output_shape).to(torch.int)
ext_module.border_align_forward(
input, boxes, output, argmax_idx, pool_size=ctx.pool_size)
ctx.save_for_backward(boxes, argmax_idx)
return output
@staticmethod
@once_differentiable
def backward(ctx, grad_output):
boxes, argmax_idx = ctx.saved_tensors
grad_input = grad_output.new_zeros(ctx.input_shape)
# complex head architecture may cause grad_output uncontiguous
grad_output = grad_output.contiguous()
ext_module.border_align_backward(
grad_output,
boxes,
argmax_idx,
grad_input,
pool_size=ctx.pool_size)
return grad_input, None, None
border_align = BorderAlignFunction.apply
class BorderAlign(nn.Module):
r"""Border align pooling layer.
Applies border_align over the input feature based on predicted bboxes.
The details were described in the paper
`BorderDet: Border Feature for Dense Object Detection
<https://arxiv.org/abs/2007.11056>`_.
For each border line (e.g. top, left, bottom or right) of each box,
border_align does the following:
1. uniformly samples `pool_size`+1 positions on this line, involving \
the start and end points.
2. the corresponding features on these points are computed by \
bilinear interpolation.
3. max pooling over all the `pool_size`+1 positions are used for \
computing pooled feature.
Args:
pool_size (int): number of positions sampled over the boxes' borders
(e.g. top, bottom, left, right).
"""
def __init__(self, pool_size):
super(BorderAlign, self).__init__()
self.pool_size = pool_size
def forward(self, input, boxes):
"""
Args:
input: Features with shape [N,4C,H,W]. Channels ranged in [0,C),
[C,2C), [2C,3C), [3C,4C) represent the top, left, bottom,
right features respectively.
boxes: Boxes with shape [N,H*W,4]. Coordinate format (x1,y1,x2,y2).
Returns:
Tensor: Pooled features with shape [N,C,H*W,4]. The order is
(top,left,bottom,right) for the last dimension.
"""
return border_align(input, boxes, self.pool_size)
def __repr__(self):
s = self.__class__.__name__
s += f'(pool_size={self.pool_size})'
return s
|