--- datasets: - genbio-ai/transcript_isoform_expression_prediction base_model: - genbio-ai/AIDO.RNA-1.6B-CDS - EleutherAI/enformer-official-rough - facebook/esm2_t30_150M_UR50D metrics: - spearmanr - r_squared tags: - biology --- # Tri-modal model for RNA isoform expression prediction ## RNA isoform expression prediction * Input: dna_seq, rna_seq, protein_seq * Output: expression level in 30 tissues ## Model architecture

description

* Backbones: * DNA: Enformer (fully finetuning) * RNA: AIDO.RNA-1.6B-CDS (lora finetuning) * Protein: ESM2-150M (lora finetuning) * Fusion method: concat fusion ## Usage **Download model** ```python from huggingface_hub import snapshot_download from pathlib import Path model_name = "genbio-ai/AIDO.MM-Enformer-RNA-1.6B-CDS-ESM2-150M-ConcatFusion-rna-isoform-expression-ckpt" genbio_models_path = Path.home().joinpath('genbio_models', model_name) genbio_models_path.mkdir(parents=True, exist_ok=True) snapshot_download(repo_id=model_name, local_dir=genbio_models_path) ``` **Evaluation script** Once you download the model, you can use the model in [ModelGenertor](https://github.com/genbio-ai/ModelGenerator) using the following script: ```bash CONFIG_FILE=... # put the config file path here CKPT_PATH=... # put the model checkpoint path here mgen test --config $CONFIG_FILE \ --data.batch_size 16 \ --trainer.logger null \ --model.strict_loading False \ --model.reset_optimizer_states True \ --ckpt_path $CKPT_PATH ```