Update README.md
Browse files
README.md
CHANGED
@@ -22,8 +22,8 @@ mgen test --model SequenceClassification --model.backbone aido_rna_650m_cds --da
|
|
22 |
```python
|
23 |
from modelgenerator.tasks import Embed
|
24 |
model = Embed.from_config({"model.backbone": "aido_rna_650m_cds"}).eval()
|
25 |
-
|
26 |
-
embedding = model(
|
27 |
print(embedding.shape)
|
28 |
print(embedding)
|
29 |
```
|
@@ -32,8 +32,8 @@ print(embedding)
|
|
32 |
import torch
|
33 |
from modelgenerator.tasks import SequenceClassification
|
34 |
model = SequenceClassification.from_config({"model.backbone": "aido_rna_650m_cds", "model.n_classes": 2}).eval()
|
35 |
-
|
36 |
-
logits = model(
|
37 |
print(logits)
|
38 |
print(torch.argmax(logits, dim=-1))
|
39 |
```
|
@@ -42,8 +42,8 @@ print(torch.argmax(logits, dim=-1))
|
|
42 |
import torch
|
43 |
from modelgenerator.tasks import TokenClassification
|
44 |
model = TokenClassification.from_config({"model.backbone": "aido_rna_650m_cds", "model.n_classes": 3}).eval()
|
45 |
-
|
46 |
-
logits = model(
|
47 |
print(logits)
|
48 |
print(torch.argmax(logits, dim=-1))
|
49 |
```
|
@@ -51,8 +51,8 @@ print(torch.argmax(logits, dim=-1))
|
|
51 |
```python
|
52 |
from modelgenerator.tasks import SequenceRegression
|
53 |
model = SequenceRegression.from_config({"model.backbone": "aido_rna_650m_cds"}).eval()
|
54 |
-
|
55 |
-
logits = model(
|
56 |
print(logits)
|
57 |
```
|
58 |
|
@@ -60,8 +60,8 @@ print(logits)
|
|
60 |
```python
|
61 |
from genbio_finetune.tasks import Embed
|
62 |
model = Embed.from_config({"model.backbone": "aido_rna_650m_cds"}).eval()
|
63 |
-
|
64 |
-
embedding = model(
|
65 |
print(embedding.shape)
|
66 |
print(embedding)
|
67 |
```
|
|
|
22 |
```python
|
23 |
from modelgenerator.tasks import Embed
|
24 |
model = Embed.from_config({"model.backbone": "aido_rna_650m_cds"}).eval()
|
25 |
+
transformed_batch = model.transform({"sequences": ["ACGT", "AGCT"]})
|
26 |
+
embedding = model(transformed_batch)
|
27 |
print(embedding.shape)
|
28 |
print(embedding)
|
29 |
```
|
|
|
32 |
import torch
|
33 |
from modelgenerator.tasks import SequenceClassification
|
34 |
model = SequenceClassification.from_config({"model.backbone": "aido_rna_650m_cds", "model.n_classes": 2}).eval()
|
35 |
+
transformed_batch = model.transform({"sequences": ["ACGT", "AGCT"]})
|
36 |
+
logits = model(transformed_batch)
|
37 |
print(logits)
|
38 |
print(torch.argmax(logits, dim=-1))
|
39 |
```
|
|
|
42 |
import torch
|
43 |
from modelgenerator.tasks import TokenClassification
|
44 |
model = TokenClassification.from_config({"model.backbone": "aido_rna_650m_cds", "model.n_classes": 3}).eval()
|
45 |
+
transformed_batch = model.transform({"sequences": ["ACGT", "AGCT"]})
|
46 |
+
logits = model(transformed_batch)
|
47 |
print(logits)
|
48 |
print(torch.argmax(logits, dim=-1))
|
49 |
```
|
|
|
51 |
```python
|
52 |
from modelgenerator.tasks import SequenceRegression
|
53 |
model = SequenceRegression.from_config({"model.backbone": "aido_rna_650m_cds"}).eval()
|
54 |
+
transformed_batch = model.transform({"sequences": ["ACGT", "AGCT"]})
|
55 |
+
logits = model(transformed_batch)
|
56 |
print(logits)
|
57 |
```
|
58 |
|
|
|
60 |
```python
|
61 |
from genbio_finetune.tasks import Embed
|
62 |
model = Embed.from_config({"model.backbone": "aido_rna_650m_cds"}).eval()
|
63 |
+
transformed_batch = model.transform({"sequences": ["ACGT", "ACGT"]})
|
64 |
+
embedding = model(transformed_batch)
|
65 |
print(embedding.shape)
|
66 |
print(embedding)
|
67 |
```
|