pan-li commited on
Commit
ef7baa6
·
verified ·
1 Parent(s): 4eb1d87

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -91,8 +91,8 @@ We encode protein sequence with single amino acid resolution with 44 vocabularie
91
  For more information, visit: [Model Generator](https://github.com/genbio-ai/modelgenerator)
92
 
93
  ```bash
94
- mgen fit --model SequenceClassification --model.backbone aido_ragprotein_16b --data SequenceClassificationDataModule --data.path <hf_or_local_path_to_your_dataset>
95
- mgen test --model SequenceClassification --model.backbone aido_ragprotein_16b --data SequenceClassificationDataModule --data.path <hf_or_local_path_to_your_dataset>
96
  ```
97
 
98
  ### Or use directly in Python
@@ -102,7 +102,7 @@ mgen test --model SequenceClassification --model.backbone aido_ragprotein_16b --
102
  ```python
103
  import torch
104
  from modelgenerator.tasks import Embed
105
- model = Embed.from_config({"model.backbone": "aido_ragprotein_16b"}).eval()
106
  model.backbone.max_length = 12800
107
  data = torch.load("examples.pt", 'cpu')[0]
108
  transformed_batch = model.transform(data)
@@ -117,7 +117,7 @@ print(embedding.shape)
117
  ```python
118
  import torch
119
  from modelgenerator.tasks import SequenceClassification
120
- model = SequenceClassification.from_config({"model.backbone": "aido_ragprotein_16b", "model.n_classes": 2}).eval()
121
  model.backbone.max_length = 12800
122
  data = torch.load("examples.pt", 'cpu')[0]
123
  transformed_batch = model.transform(data)
@@ -133,7 +133,7 @@ print(torch.argmax(logits, dim=-1))
133
  ```python
134
  import torch
135
  from modelgenerator.tasks import TokenClassification
136
- model = TokenClassification.from_config({"model.backbone": "aido_ragprotein_16b", "model.n_classes": 3}).eval()
137
  model.backbone.max_length = 12800
138
  data = torch.load("examples.pt", 'cpu')[0]
139
  transformed_batch = model.transform(data)
@@ -148,7 +148,7 @@ print(torch.argmax(logits, dim=-1))
148
 
149
  ```python
150
  from modelgenerator.tasks import SequenceRegression
151
- model = SequenceRegression.from_config({"model.backbone": "aido_ragprotein_16b"}).eval()
152
  model.backbone.max_length = 12800
153
  data = torch.load("examples.pt", 'cpu')[0]
154
  transformed_batch = model.transform(data)
 
91
  For more information, visit: [Model Generator](https://github.com/genbio-ai/modelgenerator)
92
 
93
  ```bash
94
+ mgen fit --model SequenceClassification --model.backbone aido_protein_rag_16b --data SequenceClassificationDataModule --data.path <hf_or_local_path_to_your_dataset>
95
+ mgen test --model SequenceClassification --model.backbone aido_protein_rag_16b --data SequenceClassificationDataModule --data.path <hf_or_local_path_to_your_dataset>
96
  ```
97
 
98
  ### Or use directly in Python
 
102
  ```python
103
  import torch
104
  from modelgenerator.tasks import Embed
105
+ model = Embed.from_config({"model.backbone": "aido_protein_rag_16b"}).eval()
106
  model.backbone.max_length = 12800
107
  data = torch.load("examples.pt", 'cpu')[0]
108
  transformed_batch = model.transform(data)
 
117
  ```python
118
  import torch
119
  from modelgenerator.tasks import SequenceClassification
120
+ model = SequenceClassification.from_config({"model.backbone": "aido_protein_rag_16b", "model.n_classes": 2}).eval()
121
  model.backbone.max_length = 12800
122
  data = torch.load("examples.pt", 'cpu')[0]
123
  transformed_batch = model.transform(data)
 
133
  ```python
134
  import torch
135
  from modelgenerator.tasks import TokenClassification
136
+ model = TokenClassification.from_config({"model.backbone": "aido_protein_rag_16b", "model.n_classes": 3}).eval()
137
  model.backbone.max_length = 12800
138
  data = torch.load("examples.pt", 'cpu')[0]
139
  transformed_batch = model.transform(data)
 
148
 
149
  ```python
150
  from modelgenerator.tasks import SequenceRegression
151
+ model = SequenceRegression.from_config({"model.backbone": "aido_protein_rag_16b"}).eval()
152
  model.backbone.max_length = 12800
153
  data = torch.load("examples.pt", 'cpu')[0]
154
  transformed_batch = model.transform(data)