Update README.md
Browse files
README.md
CHANGED
@@ -1,14 +1,22 @@
|
|
1 |
# AIDO.Protein-16B-v1
|
2 |
-
|
3 |
-
|
|
|
4 |
|
5 |
## How to Use
|
6 |
-
### Build any downstream models from this backbone
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
#### Embedding
|
8 |
```python
|
9 |
-
from
|
10 |
-
model = Embed.from_config({"model.backbone": "
|
11 |
-
collated_batch = model.collate({"sequences": ["
|
12 |
embedding = model(collated_batch)
|
13 |
print(embedding.shape)
|
14 |
print(embedding)
|
@@ -16,9 +24,9 @@ print(embedding)
|
|
16 |
#### Sequence Level Classification
|
17 |
```python
|
18 |
import torch
|
19 |
-
from
|
20 |
-
model = SequenceClassification.from_config({"model.backbone": "
|
21 |
-
collated_batch = model.collate({"sequences": ["
|
22 |
logits = model(collated_batch)
|
23 |
print(logits)
|
24 |
print(torch.argmax(logits, dim=-1))
|
@@ -26,26 +34,32 @@ print(torch.argmax(logits, dim=-1))
|
|
26 |
#### Token Level Classification
|
27 |
```python
|
28 |
import torch
|
29 |
-
from
|
30 |
-
model = TokenClassification.from_config({"model.backbone": "
|
31 |
-
collated_batch = model.collate({"sequences": ["
|
32 |
logits = model(collated_batch)
|
33 |
print(logits)
|
34 |
print(torch.argmax(logits, dim=-1))
|
35 |
```
|
36 |
#### Regression
|
37 |
```python
|
38 |
-
from
|
39 |
-
model = SequenceRegression.from_config({"model.backbone": "
|
40 |
-
collated_batch = model.collate({"sequences": ["
|
41 |
logits = model(collated_batch)
|
42 |
print(logits)
|
43 |
```
|
44 |
-
#### Protein-Protein Interaction
|
45 |
|
46 |
-
|
|
|
47 |
```
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
```
|
51 |
-
For more information, visit: [Model Generator](https://github.com/genbio-ai/modelgenerator)
|
|
|
1 |
# AIDO.Protein-16B-v1
|
2 |
+
|
3 |
+
AIDO.Protein-16B-v1 continues the pre-training of [AIDO.Protein-16B](https://huggingface.co/genbio-ai/AIDO.Protein-16B) using an additional 100 billion amino acids from Uniref90.
|
4 |
+
|
5 |
|
6 |
## How to Use
|
7 |
+
### Build any downstream models from this backbone with ModelGenerator
|
8 |
+
For more information, visit: [Model Generator](https://github.com/genbio-ai/modelgenerator)
|
9 |
+
```bash
|
10 |
+
mgen fit --model SequenceClassification --model.backbone aido_protein_16b_v1 --data SequenceClassificationDataModule --data.path <hf_or_local_path_to_your_dataset>
|
11 |
+
mgen test --model SequenceClassification --model.backbone aido_protein_16b_v1 --data SequenceClassificationDataModule --data.path <hf_or_local_path_to_your_dataset>
|
12 |
+
```
|
13 |
+
|
14 |
+
### Or use directly in Python
|
15 |
#### Embedding
|
16 |
```python
|
17 |
+
from modelgenerator.tasks import Embed
|
18 |
+
model = Embed.from_config({"model.backbone": "aido_protein_16b_v1"}).eval()
|
19 |
+
collated_batch = model.collate({"sequences": ["HELLQ", "WRLD"]})
|
20 |
embedding = model(collated_batch)
|
21 |
print(embedding.shape)
|
22 |
print(embedding)
|
|
|
24 |
#### Sequence Level Classification
|
25 |
```python
|
26 |
import torch
|
27 |
+
from modelgenerator.tasks import SequenceClassification
|
28 |
+
model = SequenceClassification.from_config({"model.backbone": "aido_protein_16b_v1", "model.n_classes": 2}).eval()
|
29 |
+
collated_batch = model.collate({"sequences": ["HELLQ", "WRLD"]})
|
30 |
logits = model(collated_batch)
|
31 |
print(logits)
|
32 |
print(torch.argmax(logits, dim=-1))
|
|
|
34 |
#### Token Level Classification
|
35 |
```python
|
36 |
import torch
|
37 |
+
from modelgenerator.tasks import TokenClassification
|
38 |
+
model = TokenClassification.from_config({"model.backbone": "aido_protein_16b_v1", "model.n_classes": 3}).eval()
|
39 |
+
collated_batch = model.collate({"sequences": ["HELLQ", "WRLD"]})
|
40 |
logits = model(collated_batch)
|
41 |
print(logits)
|
42 |
print(torch.argmax(logits, dim=-1))
|
43 |
```
|
44 |
#### Regression
|
45 |
```python
|
46 |
+
from modelgenerator.tasks import SequenceRegression
|
47 |
+
model = SequenceRegression.from_config({"model.backbone": "aido_protein_16b_v1"}).eval()
|
48 |
+
collated_batch = model.collate({"sequences": ["HELLQ", "WRLD"]})
|
49 |
logits = model(collated_batch)
|
50 |
print(logits)
|
51 |
```
|
|
|
52 |
|
53 |
+
# Citation
|
54 |
+
Please cite AIDO.Protein using the following BibTex code:
|
55 |
```
|
56 |
+
@inproceedings{sun_mixture_2024,
|
57 |
+
title = {Mixture of Experts Enable Efficient and Effective Protein Understanding and Design},
|
58 |
+
url = {https://www.biorxiv.org/content/10.1101/2024.11.29.625425v1},
|
59 |
+
doi = {10.1101/2024.11.29.625425},
|
60 |
+
publisher = {bioRxiv},
|
61 |
+
author = {Sun, Ning and Zou, Shuxian and Tao, Tianhua and Mahbub, Sazan and Li, Dian and Zhuang, Yonghao and Wang, Hongyi and Cheng, Xingyi and Song, Le and Xing, Eric P.},
|
62 |
+
year = {2024},
|
63 |
+
booktitle={NeurIPS 2024 Workshop on AI for New Drug Modalities},
|
64 |
+
}
|
65 |
```
|
|