gbhong commited on
Commit
e3c14cc
·
1 Parent(s): 02e33c1

initial commit

Browse files
Files changed (7) hide show
  1. .gitignore +45 -0
  2. README.md +33 -1
  3. config.json +25 -0
  4. label_list.json +1 -0
  5. model.safetensors +3 -0
  6. special_tokens.json +1 -0
  7. vocab.txt +0 -0
.gitignore ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ignore Python cache and compiled files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *.pyo
5
+
6
+ # Ignore logs
7
+ *.log
8
+ logs/
9
+ *.out
10
+
11
+ # Ignore prediction files (JSON format)
12
+ *.json
13
+
14
+ # Ignore environment and dependency files
15
+ .env
16
+ *.env
17
+ *.venv
18
+ venv/
19
+ ENV/
20
+ *.lock
21
+
22
+ # Ignore Jupyter Notebook checkpoints
23
+ .ipynb_checkpoints
24
+
25
+ # Ignore temporary or backup files
26
+ *.bak
27
+ *.swp
28
+ *.tmp
29
+
30
+ # Ignore OS-specific files
31
+ .DS_Store
32
+ Thumbs.db
33
+
34
+ # Ignore model checkpoint files (optional)
35
+ checkpoint/
36
+ *.ckpt
37
+
38
+ # If using Hugging Face Model repository, don't ignore the following:
39
+ !config.json
40
+ !label_list.json
41
+ !tokenizer_config.json
42
+ !tokenizer.json
43
+ !special_tokens.json
44
+ !added_tokens.json
45
+ !pytorch_model.bin
README.md CHANGED
@@ -10,4 +10,36 @@ base_model:
10
  - microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext
11
  pipeline_tag: text-classification
12
  library_name: transformers
13
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  - microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext
11
  pipeline_tag: text-classification
12
  library_name: transformers
13
+ ---
14
+
15
+ # Fine-tuned RE Model for DiMB-RE
16
+
17
+ ## Model Description
18
+ This is a fine-tuned **Relation Extraction (RE)** model based on the [BiomedNLP-BiomedBERT-base-uncased](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext) model, specifically designed for sentence classification task to extract relations between extract entities for diet, human metabolism and microbiome field. The model has been trained on the DiMB-RE dataset and is optimized to infer relationship with 13 relation types.
19
+
20
+ <!-- ### Key Features:
21
+ - **Language**: English
22
+ - **Task**: Token classification for Named Entity Recognition (NER)
23
+ - **Base Model**: BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext
24
+ - **Domains**: Biomedical, Clinical, Scientific -->
25
+
26
+ ## Performance
27
+ The model has been evaluated on the DiMB-RE using the following metrics:
28
+ - **Relation with Factuality (w/ GOLD relations)** - P: 0.926, R: 0.843, F1: 0.883
29
+ - **Relation with Factuality (Strict, end-to-end w/ predicted entities and relations)** - P: 0.399, R: 0.322, F1: 0.356
30
+ - **Relation with Factuality (Relaxed, end-to-end w/ predicted entities and relations)** - P: 0.440, R: 0.355, F1: 0.393
31
+
32
+ ## Citation
33
+ If you use this model, please cite like below:
34
+
35
+ ```bibtex
36
+ @misc{hong2024dimbreminingscientificliterature,
37
+ title={DiMB-RE: Mining the Scientific Literature for Diet-Microbiome Associations},
38
+ author={Gibong Hong and Veronica Hindle and Nadine M. Veasley and Hannah D. Holscher and Halil Kilicoglu},
39
+ year={2024},
40
+ eprint={2409.19581},
41
+ archivePrefix={arXiv},
42
+ primaryClass={cs.CL},
43
+ url={https://arxiv.org/abs/2409.19581},
44
+ }
45
+ ```
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext",
3
+ "architectures": [
4
+ "BertForRelation"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.41.2",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30766
25
+ }
label_list.json ADDED
@@ -0,0 +1 @@
 
 
1
+ ["no_certainty", "Factual", "Negated", "Unknown"]
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9b2e5389239af01ec02982f5a9b7abe5dfbb4f27b9164e5f756e103c0a1c075
3
+ size 438757552
special_tokens.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
vocab.txt ADDED
The diff for this file is too large to render. See raw diff