update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: ec-biogpt-noised-pubmed-v2
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# ec-biogpt-noised-pubmed-v2
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [microsoft/biogpt](https://huggingface.co/microsoft/biogpt) on an unknown dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 1.2703
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
More information needed
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Training and evaluation data
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
### Training hyperparameters
|
34 |
+
|
35 |
+
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 5e-05
|
37 |
+
- train_batch_size: 16
|
38 |
+
- eval_batch_size: 16
|
39 |
+
- seed: 42
|
40 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
41 |
+
- lr_scheduler_type: linear
|
42 |
+
- lr_scheduler_warmup_steps: 10
|
43 |
+
- num_epochs: 5
|
44 |
+
- mixed_precision_training: Native AMP
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
49 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
50 |
+
| 1.1503 | 0.11 | 500 | 1.3369 |
|
51 |
+
| 1.3766 | 0.21 | 1000 | 1.2721 |
|
52 |
+
| 1.3523 | 0.32 | 1500 | 1.2516 |
|
53 |
+
| 1.3123 | 0.43 | 2000 | 1.2394 |
|
54 |
+
| 1.1954 | 0.54 | 2500 | 1.2265 |
|
55 |
+
| 1.226 | 0.64 | 3000 | 1.2182 |
|
56 |
+
| 1.1269 | 0.75 | 3500 | 1.2118 |
|
57 |
+
| 1.212 | 0.86 | 4000 | 1.2053 |
|
58 |
+
| 1.3253 | 0.96 | 4500 | 1.1984 |
|
59 |
+
| 1.0722 | 1.07 | 5000 | 1.2016 |
|
60 |
+
| 1.1208 | 1.18 | 5500 | 1.2009 |
|
61 |
+
| 1.132 | 1.28 | 6000 | 1.1992 |
|
62 |
+
| 1.1228 | 1.39 | 6500 | 1.1967 |
|
63 |
+
| 1.1529 | 1.5 | 7000 | 1.1918 |
|
64 |
+
| 1.0342 | 1.61 | 7500 | 1.1916 |
|
65 |
+
| 1.0881 | 1.71 | 8000 | 1.1889 |
|
66 |
+
| 1.084 | 1.82 | 8500 | 1.1852 |
|
67 |
+
| 1.1409 | 1.93 | 9000 | 1.1807 |
|
68 |
+
| 0.9794 | 2.03 | 9500 | 1.2098 |
|
69 |
+
| 0.9821 | 2.14 | 10000 | 1.2146 |
|
70 |
+
| 0.9695 | 2.25 | 10500 | 1.2096 |
|
71 |
+
| 0.9866 | 2.35 | 11000 | 1.2088 |
|
72 |
+
| 1.0305 | 2.46 | 11500 | 1.2059 |
|
73 |
+
| 0.9532 | 2.57 | 12000 | 1.2060 |
|
74 |
+
| 0.9978 | 2.68 | 12500 | 1.2041 |
|
75 |
+
| 1.0013 | 2.78 | 13000 | 1.2006 |
|
76 |
+
| 1.0401 | 2.89 | 13500 | 1.2023 |
|
77 |
+
| 1.0899 | 3.0 | 14000 | 1.1988 |
|
78 |
+
| 0.8229 | 3.1 | 14500 | 1.2410 |
|
79 |
+
| 0.8598 | 3.21 | 15000 | 1.2420 |
|
80 |
+
| 0.9295 | 3.32 | 15500 | 1.2414 |
|
81 |
+
| 0.8477 | 3.43 | 16000 | 1.2386 |
|
82 |
+
| 0.9302 | 3.53 | 16500 | 1.2382 |
|
83 |
+
| 0.8284 | 3.64 | 17000 | 1.2374 |
|
84 |
+
| 0.8242 | 3.75 | 17500 | 1.2410 |
|
85 |
+
| 0.8422 | 3.85 | 18000 | 1.2346 |
|
86 |
+
| 0.8742 | 3.96 | 18500 | 1.2362 |
|
87 |
+
| 0.798 | 4.07 | 19000 | 1.2667 |
|
88 |
+
| 0.7821 | 4.17 | 19500 | 1.2701 |
|
89 |
+
| 0.7788 | 4.28 | 20000 | 1.2714 |
|
90 |
+
| 0.7701 | 4.39 | 20500 | 1.2702 |
|
91 |
+
| 0.7348 | 4.5 | 21000 | 1.2722 |
|
92 |
+
| 0.762 | 4.6 | 21500 | 1.2705 |
|
93 |
+
| 0.7385 | 4.71 | 22000 | 1.2705 |
|
94 |
+
| 0.7837 | 4.82 | 22500 | 1.2695 |
|
95 |
+
| 0.8371 | 4.92 | 23000 | 1.2703 |
|
96 |
+
|
97 |
+
|
98 |
+
### Framework versions
|
99 |
+
|
100 |
+
- Transformers 4.27.4
|
101 |
+
- Pytorch 2.0.0+cu118
|
102 |
+
- Datasets 2.11.0
|
103 |
+
- Tokenizers 0.13.3
|