gayanin commited on
Commit
3062e23
·
1 Parent(s): 5f7cb84

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +127 -0
README.md ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: ec-biogpt-masked-pubmed
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # ec-biogpt-masked-pubmed
14
+
15
+ This model is a fine-tuned version of [microsoft/biogpt](https://huggingface.co/microsoft/biogpt) on an unknown dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.7418
18
+
19
+ ## Model description
20
+
21
+ More information needed
22
+
23
+ ## Intended uses & limitations
24
+
25
+ More information needed
26
+
27
+ ## Training and evaluation data
28
+
29
+ More information needed
30
+
31
+ ## Training procedure
32
+
33
+ ### Training hyperparameters
34
+
35
+ The following hyperparameters were used during training:
36
+ - learning_rate: 5e-05
37
+ - train_batch_size: 16
38
+ - eval_batch_size: 16
39
+ - seed: 42
40
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
41
+ - lr_scheduler_type: linear
42
+ - lr_scheduler_warmup_steps: 10
43
+ - num_epochs: 5
44
+ - mixed_precision_training: Native AMP
45
+
46
+ ### Training results
47
+
48
+ | Training Loss | Epoch | Step | Validation Loss |
49
+ |:-------------:|:-----:|:-----:|:---------------:|
50
+ | 0.3707 | 0.07 | 500 | 0.8468 |
51
+ | 0.5388 | 0.14 | 1000 | 0.7643 |
52
+ | 0.5857 | 0.21 | 1500 | 0.7669 |
53
+ | 0.5441 | 0.28 | 2000 | 0.7576 |
54
+ | 0.5294 | 0.36 | 2500 | 0.7570 |
55
+ | 0.7544 | 0.43 | 3000 | 0.7227 |
56
+ | 0.7075 | 0.5 | 3500 | 0.7153 |
57
+ | 0.7513 | 0.57 | 4000 | 0.7105 |
58
+ | 0.7101 | 0.64 | 4500 | 0.7059 |
59
+ | 0.7369 | 0.71 | 5000 | 0.7031 |
60
+ | 0.7477 | 0.78 | 5500 | 0.6991 |
61
+ | 0.6831 | 0.85 | 6000 | 0.6978 |
62
+ | 0.6458 | 0.93 | 6500 | 0.6940 |
63
+ | 0.6998 | 1.0 | 7000 | 0.6907 |
64
+ | 0.5901 | 1.07 | 7500 | 0.7036 |
65
+ | 0.633 | 1.14 | 8000 | 0.7016 |
66
+ | 0.6375 | 1.21 | 8500 | 0.7020 |
67
+ | 0.6378 | 1.28 | 9000 | 0.6988 |
68
+ | 0.5952 | 1.35 | 9500 | 0.6965 |
69
+ | 0.5714 | 1.42 | 10000 | 0.6960 |
70
+ | 0.5874 | 1.5 | 10500 | 0.6957 |
71
+ | 0.5828 | 1.57 | 11000 | 0.6917 |
72
+ | 0.5921 | 1.64 | 11500 | 0.6920 |
73
+ | 0.6086 | 1.71 | 12000 | 0.6905 |
74
+ | 0.5872 | 1.78 | 12500 | 0.6878 |
75
+ | 0.5895 | 1.85 | 13000 | 0.6883 |
76
+ | 0.5953 | 1.92 | 13500 | 0.6860 |
77
+ | 0.598 | 1.99 | 14000 | 0.6852 |
78
+ | 0.4805 | 2.07 | 14500 | 0.7077 |
79
+ | 0.4885 | 2.14 | 15000 | 0.7107 |
80
+ | 0.5048 | 2.21 | 15500 | 0.7083 |
81
+ | 0.4665 | 2.28 | 16000 | 0.7098 |
82
+ | 0.5057 | 2.35 | 16500 | 0.7088 |
83
+ | 0.4706 | 2.42 | 17000 | 0.7081 |
84
+ | 0.5056 | 2.49 | 17500 | 0.7076 |
85
+ | 0.4884 | 2.56 | 18000 | 0.7068 |
86
+ | 0.487 | 2.64 | 18500 | 0.7051 |
87
+ | 0.5327 | 2.71 | 19000 | 0.7062 |
88
+ | 0.4902 | 2.78 | 19500 | 0.7042 |
89
+ | 0.5277 | 2.85 | 20000 | 0.7021 |
90
+ | 0.499 | 2.92 | 20500 | 0.7024 |
91
+ | 0.4981 | 2.99 | 21000 | 0.7002 |
92
+ | 0.4174 | 3.06 | 21500 | 0.7237 |
93
+ | 0.4233 | 3.13 | 22000 | 0.7244 |
94
+ | 0.4331 | 3.21 | 22500 | 0.7265 |
95
+ | 0.4203 | 3.28 | 23000 | 0.7275 |
96
+ | 0.4265 | 3.35 | 23500 | 0.7252 |
97
+ | 0.4302 | 3.42 | 24000 | 0.7271 |
98
+ | 0.4343 | 3.49 | 24500 | 0.7244 |
99
+ | 0.4264 | 3.56 | 25000 | 0.7265 |
100
+ | 0.4565 | 3.63 | 25500 | 0.7247 |
101
+ | 0.4258 | 3.7 | 26000 | 0.7245 |
102
+ | 0.4191 | 3.78 | 26500 | 0.7246 |
103
+ | 0.4412 | 3.85 | 27000 | 0.7234 |
104
+ | 0.4604 | 3.92 | 27500 | 0.7249 |
105
+ | 0.4197 | 3.99 | 28000 | 0.7238 |
106
+ | 0.3666 | 4.06 | 28500 | 0.7413 |
107
+ | 0.3772 | 4.13 | 29000 | 0.7414 |
108
+ | 0.3628 | 4.2 | 29500 | 0.7410 |
109
+ | 0.3611 | 4.27 | 30000 | 0.7431 |
110
+ | 0.3736 | 4.35 | 30500 | 0.7414 |
111
+ | 0.3741 | 4.42 | 31000 | 0.7420 |
112
+ | 0.3661 | 4.49 | 31500 | 0.7424 |
113
+ | 0.3966 | 4.56 | 32000 | 0.7423 |
114
+ | 0.4058 | 4.63 | 32500 | 0.7423 |
115
+ | 0.4028 | 4.7 | 33000 | 0.7423 |
116
+ | 0.4028 | 4.77 | 33500 | 0.7420 |
117
+ | 0.3802 | 4.84 | 34000 | 0.7421 |
118
+ | 0.3612 | 4.92 | 34500 | 0.7418 |
119
+ | 0.3804 | 4.99 | 35000 | 0.7418 |
120
+
121
+
122
+ ### Framework versions
123
+
124
+ - Transformers 4.27.3
125
+ - Pytorch 1.13.1+cu116
126
+ - Datasets 2.10.1
127
+ - Tokenizers 0.13.2