gauravparajuli commited on
Commit
902563b
·
verified ·
1 Parent(s): 6850dd8

update files

Browse files
.ipynb_checkpoints/README-checkpoint.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: deepseek-ai/Janus-Pro-1B
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: deepseek-ai/Janus-Pro-1B
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/root/.cache/huggingface/hub/models--deepseek-ai--Janus-Pro-1B/snapshots/960ab33191f61342a4c60ae74d8dc356a39fafcb",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": [],
22
+ "peft_type": "LORA",
23
+ "r": 4,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": "^(language_model).*\\.(gate_proj|up_proj|q_proj|k_proj|v_proj|o_proj|down_proj)$",
27
+ "task_type": "CAUSAL_LM",
28
+ "trainable_token_indices": null,
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e25fc634dfdafc3aa9925ce4fe3312213fcc8d11da55a9a80044f5a52f5beef
3
+ size 7618080
additional_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lora_dtype": null, "lorap_lr_ratio": null, "lorap_emb_lr": 1e-06}
args.json ADDED
@@ -0,0 +1,364 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model": "deepseek-ai/Janus-Pro-1B",
3
+ "model_type": "deepseek_janus_pro",
4
+ "model_revision": null,
5
+ "task_type": "causal_lm",
6
+ "torch_dtype": "float16",
7
+ "attn_impl": "eager",
8
+ "num_labels": null,
9
+ "problem_type": null,
10
+ "rope_scaling": null,
11
+ "device_map": null,
12
+ "max_memory": {},
13
+ "local_repo_path": null,
14
+ "template": "deepseek_janus_pro",
15
+ "system": null,
16
+ "max_length": 1024,
17
+ "truncation_strategy": "delete",
18
+ "max_pixels": null,
19
+ "agent_template": null,
20
+ "norm_bbox": null,
21
+ "response_prefix": null,
22
+ "padding_side": "right",
23
+ "loss_scale": "default",
24
+ "sequence_parallel_size": 1,
25
+ "use_chat_template": true,
26
+ "template_backend": "swift",
27
+ "dataset": [
28
+ "kvasir-vqa.jsonl"
29
+ ],
30
+ "val_dataset": [],
31
+ "split_dataset_ratio": 0.05,
32
+ "data_seed": 42,
33
+ "dataset_num_proc": 1,
34
+ "dataset_shuffle": true,
35
+ "val_dataset_shuffle": false,
36
+ "streaming": false,
37
+ "interleave_prob": null,
38
+ "stopping_strategy": "first_exhausted",
39
+ "shuffle_buffer_size": 1000,
40
+ "enable_cache": false,
41
+ "download_mode": "reuse_dataset_if_exists",
42
+ "columns": {},
43
+ "strict": false,
44
+ "remove_unused_columns": true,
45
+ "model_name": [
46
+ null,
47
+ null
48
+ ],
49
+ "model_author": [
50
+ null,
51
+ null
52
+ ],
53
+ "custom_dataset_info": [],
54
+ "quant_method": null,
55
+ "quant_bits": null,
56
+ "hqq_axis": null,
57
+ "bnb_4bit_compute_dtype": "float32",
58
+ "bnb_4bit_quant_type": "nf4",
59
+ "bnb_4bit_use_double_quant": true,
60
+ "bnb_4bit_quant_storage": null,
61
+ "max_new_tokens": 64,
62
+ "temperature": 0.0,
63
+ "top_k": null,
64
+ "top_p": null,
65
+ "repetition_penalty": null,
66
+ "num_beams": 1,
67
+ "stream": false,
68
+ "stop_words": [],
69
+ "logprobs": false,
70
+ "top_logprobs": null,
71
+ "ckpt_dir": null,
72
+ "load_dataset_config": null,
73
+ "lora_modules": [],
74
+ "tuner_backend": "peft",
75
+ "train_type": "lora",
76
+ "adapters": [],
77
+ "external_plugins": [],
78
+ "seed": 42,
79
+ "model_kwargs": {},
80
+ "load_args": false,
81
+ "load_data_args": false,
82
+ "use_hf": true,
83
+ "hub_token": null,
84
+ "custom_register_path": [],
85
+ "ignore_args_error": false,
86
+ "use_swift_lora": false,
87
+ "output_dir": "/workspace/output/v0-20250510-202602",
88
+ "overwrite_output_dir": false,
89
+ "do_train": false,
90
+ "do_eval": false,
91
+ "do_predict": false,
92
+ "eval_strategy": "steps",
93
+ "prediction_loss_only": false,
94
+ "per_device_train_batch_size": 8,
95
+ "per_device_eval_batch_size": 8,
96
+ "per_gpu_train_batch_size": null,
97
+ "per_gpu_eval_batch_size": null,
98
+ "gradient_accumulation_steps": 16,
99
+ "eval_accumulation_steps": null,
100
+ "eval_delay": 0,
101
+ "torch_empty_cache_steps": null,
102
+ "learning_rate": 5e-05,
103
+ "weight_decay": 0.1,
104
+ "adam_beta1": 0.9,
105
+ "adam_beta2": 0.95,
106
+ "adam_epsilon": 1e-08,
107
+ "max_grad_norm": 1.0,
108
+ "num_train_epochs": 1.0,
109
+ "max_steps": -1,
110
+ "lr_scheduler_type": "cosine",
111
+ "lr_scheduler_kwargs": null,
112
+ "warmup_ratio": 0.03,
113
+ "warmup_steps": 0,
114
+ "log_level": "passive",
115
+ "log_level_replica": "warning",
116
+ "log_on_each_node": true,
117
+ "logging_dir": "/workspace/output/v0-20250510-202602/runs",
118
+ "logging_strategy": "steps",
119
+ "logging_first_step": true,
120
+ "logging_steps": 1,
121
+ "logging_nan_inf_filter": true,
122
+ "save_strategy": "steps",
123
+ "save_steps": 500.0,
124
+ "save_total_limit": 2,
125
+ "save_safetensors": true,
126
+ "save_on_each_node": false,
127
+ "save_only_model": false,
128
+ "restore_callback_states_from_checkpoint": false,
129
+ "no_cuda": false,
130
+ "use_cpu": false,
131
+ "use_mps_device": false,
132
+ "jit_mode_eval": false,
133
+ "use_ipex": false,
134
+ "bf16": false,
135
+ "fp16": true,
136
+ "fp16_opt_level": "O1",
137
+ "half_precision_backend": "auto",
138
+ "bf16_full_eval": false,
139
+ "fp16_full_eval": false,
140
+ "tf32": null,
141
+ "local_rank": -1,
142
+ "ddp_backend": null,
143
+ "tpu_num_cores": null,
144
+ "tpu_metrics_debug": false,
145
+ "debug": null,
146
+ "dataloader_drop_last": false,
147
+ "eval_steps": 200.0,
148
+ "dataloader_num_workers": 1,
149
+ "dataloader_prefetch_factor": null,
150
+ "past_index": -1,
151
+ "run_name": null,
152
+ "disable_tqdm": null,
153
+ "label_names": null,
154
+ "load_best_model_at_end": false,
155
+ "metric_for_best_model": "loss",
156
+ "greater_is_better": false,
157
+ "ignore_data_skip": false,
158
+ "fsdp": "",
159
+ "fsdp_min_num_params": 0,
160
+ "fsdp_config": null,
161
+ "tp_size": 0,
162
+ "fsdp_transformer_layer_cls_to_wrap": null,
163
+ "accelerator_config": {
164
+ "dispatch_batches": false
165
+ },
166
+ "deepspeed": {
167
+ "fp16": {
168
+ "enabled": "auto",
169
+ "loss_scale": 0,
170
+ "loss_scale_window": 1000,
171
+ "initial_scale_power": 16,
172
+ "hysteresis": 2,
173
+ "min_loss_scale": 1
174
+ },
175
+ "bf16": {
176
+ "enabled": "auto"
177
+ },
178
+ "zero_optimization": {
179
+ "stage": 2,
180
+ "offload_optimizer": {
181
+ "device": "cpu",
182
+ "pin_memory": true
183
+ },
184
+ "allgather_partitions": true,
185
+ "allgather_bucket_size": 200000000.0,
186
+ "overlap_comm": false,
187
+ "reduce_scatter": true,
188
+ "reduce_bucket_size": 200000000.0,
189
+ "contiguous_gradients": true
190
+ },
191
+ "gradient_accumulation_steps": "auto",
192
+ "gradient_clipping": "auto",
193
+ "steps_per_print": 2000,
194
+ "train_batch_size": "auto",
195
+ "train_micro_batch_size_per_gpu": "auto",
196
+ "wall_clock_breakdown": false
197
+ },
198
+ "label_smoothing_factor": 0.0,
199
+ "optim": "adamw_torch",
200
+ "optim_args": null,
201
+ "adafactor": false,
202
+ "group_by_length": false,
203
+ "length_column_name": "length",
204
+ "report_to": [
205
+ "wandb"
206
+ ],
207
+ "ddp_find_unused_parameters": null,
208
+ "ddp_bucket_cap_mb": null,
209
+ "ddp_broadcast_buffers": null,
210
+ "dataloader_pin_memory": true,
211
+ "dataloader_persistent_workers": false,
212
+ "skip_memory_metrics": true,
213
+ "use_legacy_prediction_loop": false,
214
+ "push_to_hub": false,
215
+ "resume_from_checkpoint": null,
216
+ "hub_model_id": null,
217
+ "hub_strategy": "every_save",
218
+ "hub_private_repo": null,
219
+ "hub_always_push": false,
220
+ "gradient_checkpointing": true,
221
+ "gradient_checkpointing_kwargs": null,
222
+ "include_inputs_for_metrics": false,
223
+ "include_for_metrics": [],
224
+ "eval_do_concat_batches": true,
225
+ "fp16_backend": "auto",
226
+ "push_to_hub_model_id": null,
227
+ "push_to_hub_organization": null,
228
+ "push_to_hub_token": null,
229
+ "mp_parameters": "",
230
+ "auto_find_batch_size": false,
231
+ "full_determinism": false,
232
+ "torchdynamo": null,
233
+ "ray_scope": "last",
234
+ "ddp_timeout": 1800,
235
+ "torch_compile": false,
236
+ "torch_compile_backend": null,
237
+ "torch_compile_mode": null,
238
+ "include_tokens_per_second": false,
239
+ "include_num_input_tokens_seen": false,
240
+ "neftune_noise_alpha": null,
241
+ "optim_target_modules": null,
242
+ "batch_eval_metrics": false,
243
+ "eval_on_start": false,
244
+ "use_liger_kernel": false,
245
+ "eval_use_gather_object": false,
246
+ "average_tokens_across_devices": false,
247
+ "sortish_sampler": false,
248
+ "predict_with_generate": false,
249
+ "generation_max_length": null,
250
+ "generation_num_beams": null,
251
+ "generation_config": null,
252
+ "check_model": true,
253
+ "acc_strategy": "token",
254
+ "train_dataloader_shuffle": true,
255
+ "metric_warmup_step": 0,
256
+ "fsdp_num": 1,
257
+ "acc_steps": 1,
258
+ "eval_use_evalscope": false,
259
+ "eval_datasets": [],
260
+ "eval_limit": null,
261
+ "eval_datasets_args": null,
262
+ "eval_generation_config": null,
263
+ "freeze_parameters": [
264
+ "vision_model",
265
+ "aligner",
266
+ "gen_vision_model",
267
+ "gen_aligner",
268
+ "gen_head",
269
+ "gen_embed"
270
+ ],
271
+ "freeze_parameters_ratio": 0.0,
272
+ "trainable_parameters": [],
273
+ "freeze_llm": false,
274
+ "freeze_vit": true,
275
+ "freeze_aligner": true,
276
+ "target_modules": [
277
+ "all-linear"
278
+ ],
279
+ "target_regex": null,
280
+ "modules_to_save": [],
281
+ "lora_rank": 4,
282
+ "lora_alpha": 16,
283
+ "lora_dropout": 0.05,
284
+ "lora_bias": "none",
285
+ "lora_dtype": null,
286
+ "lorap_lr_ratio": null,
287
+ "use_rslora": false,
288
+ "use_dora": false,
289
+ "lora_ga_batch_size": 2,
290
+ "lora_ga_iters": 2,
291
+ "lora_ga_max_length": 1024,
292
+ "lora_ga_direction": "ArB2r",
293
+ "lora_ga_scale": "stable",
294
+ "lora_ga_stable_gamma": 16,
295
+ "init_weights": true,
296
+ "fourier_n_frequency": 2000,
297
+ "fourier_scaling": 300.0,
298
+ "boft_block_size": 4,
299
+ "boft_block_num": 0,
300
+ "boft_n_butterfly_factor": 1,
301
+ "boft_dropout": 0.0,
302
+ "vera_rank": 256,
303
+ "vera_projection_prng_key": 0,
304
+ "vera_dropout": 0.0,
305
+ "vera_d_initial": 0.1,
306
+ "adapter_act": "gelu",
307
+ "adapter_length": 128,
308
+ "use_galore": false,
309
+ "galore_target_modules": null,
310
+ "galore_rank": 128,
311
+ "galore_update_proj_gap": 50,
312
+ "galore_scale": 1.0,
313
+ "galore_proj_type": "std",
314
+ "galore_optim_per_parameter": false,
315
+ "galore_with_embedding": false,
316
+ "galore_quantization": false,
317
+ "galore_proj_quant": false,
318
+ "galore_proj_bits": 4,
319
+ "galore_proj_group_size": 256,
320
+ "galore_cos_threshold": 0.4,
321
+ "galore_gamma_proj": 2,
322
+ "galore_queue_size": 5,
323
+ "adalora_target_r": 8,
324
+ "adalora_init_r": 12,
325
+ "adalora_tinit": 0,
326
+ "adalora_tfinal": 0,
327
+ "adalora_deltaT": 1,
328
+ "adalora_beta1": 0.85,
329
+ "adalora_beta2": 0.85,
330
+ "adalora_orth_reg_weight": 0.5,
331
+ "llamapro_num_new_blocks": 4,
332
+ "llamapro_num_groups": null,
333
+ "lisa_activated_layers": 0,
334
+ "lisa_step_interval": 20,
335
+ "reft_layer_key": null,
336
+ "reft_layers": null,
337
+ "reft_rank": 4,
338
+ "reft_intervention_type": "LoreftIntervention",
339
+ "reft_args": null,
340
+ "swanlab_token": null,
341
+ "swanlab_project": null,
342
+ "swanlab_workspace": null,
343
+ "swanlab_exp_name": null,
344
+ "swanlab_mode": "cloud",
345
+ "add_version": true,
346
+ "resume_only_model": false,
347
+ "create_checkpoint_symlink": false,
348
+ "packing": false,
349
+ "lazy_tokenize": true,
350
+ "loss_type": null,
351
+ "optimizer": null,
352
+ "metric": null,
353
+ "zero_hpz_partition_size": null,
354
+ "rank": -1,
355
+ "global_world_size": 1,
356
+ "local_world_size": 1,
357
+ "model_suffix": "Janus-Pro-1B",
358
+ "model_info": "ModelInfo(model_type='deepseek_janus_pro', model_dir='/root/.cache/huggingface/hub/models--deepseek-ai--Janus-Pro-1B/snapshots/960ab33191f61342a4c60ae74d8dc356a39fafcb', torch_dtype=torch.float16, max_model_len=16384, quant_method=None, quant_bits=None, rope_scaling=None, config=None, task_type='causal_lm', num_labels=None)",
359
+ "model_meta": "ModelMeta(model_type='deepseek_janus_pro', model_groups=[ModelGroup(models=[Model(ms_model_id='deepseek-ai/Janus-Pro-1B', hf_model_id='deepseek-ai/Janus-Pro-1B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='deepseek-ai/Janus-Pro-7B', hf_model_id='deepseek-ai/Janus-Pro-7B', model_path=None, ms_revision=None, hf_revision=None)], ignore_patterns=None, requires=None, tags=[])], template='deepseek_janus_pro', get_function=<function get_model_tokenizer_deepseek_janus at 0x78b99c151510>, model_arch='deepseek_janus', architectures=[], additional_saved_files=[], torch_dtype=None, is_multimodal=True, is_reward=False, task_type=None, ignore_patterns=None, requires=[], tags=[])",
360
+ "model_dir": "/root/.cache/huggingface/hub/models--deepseek-ai--Janus-Pro-1B/snapshots/960ab33191f61342a4c60ae74d8dc356a39fafcb",
361
+ "hub": "<class 'swift.hub.hub.HFHub'>",
362
+ "evaluation_strategy": "steps",
363
+ "training_args": "Seq2SeqTrainingArguments(output_dir='/workspace/output/v0-20250510-202602', overwrite_output_dir=False, do_train=False, do_eval=True, do_predict=False, eval_strategy=<IntervalStrategy.STEPS: 'steps'>, prediction_loss_only=False, per_device_train_batch_size=8, per_device_eval_batch_size=8, per_gpu_train_batch_size=None, per_gpu_eval_batch_size=None, gradient_accumulation_steps=16, eval_accumulation_steps=None, eval_delay=0, torch_empty_cache_steps=None, learning_rate=5e-05, weight_decay=0.1, adam_beta1=0.9, adam_beta2=0.95, adam_epsilon=1e-08, max_grad_norm=1.0, num_train_epochs=1.0, max_steps=-1, lr_scheduler_type=<SchedulerType.COSINE: 'cosine'>, lr_scheduler_kwargs=None, warmup_ratio=0.03, warmup_steps=0, log_level='passive', log_level_replica='warning', log_on_each_node=True, logging_dir='/workspace/output/v0-20250510-202602/runs', logging_strategy=<IntervalStrategy.STEPS: 'steps'>, logging_first_step=True, logging_steps=1, logging_nan_inf_filter=True, save_strategy=<SaveStrategy.STEPS: 'steps'>, save_steps=500, save_total_limit=2, save_safetensors=True, save_on_each_node=False, save_only_model=False, restore_callback_states_from_checkpoint=False, no_cuda=False, use_cpu=False, use_mps_device=False, seed=42, data_seed=42, jit_mode_eval=False, use_ipex=False, bf16=False, fp16=True, fp16_opt_level='O1', half_precision_backend='auto', bf16_full_eval=False, fp16_full_eval=False, tf32=None, local_rank=0, ddp_backend=None, tpu_num_cores=None, tpu_metrics_debug=False, debug=[], dataloader_drop_last=False, eval_steps=200, dataloader_num_workers=1, dataloader_prefetch_factor=10, past_index=-1, run_name='/workspace/output/v0-20250510-202602', disable_tqdm=False, remove_unused_columns=False, label_names=None, load_best_model_at_end=False, metric_for_best_model='loss', greater_is_better=False, ignore_data_skip=False, fsdp=[], fsdp_min_num_params=0, fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, tp_size=0, fsdp_transformer_layer_cls_to_wrap=None, accelerator_config=AcceleratorConfig(split_batches=False, dispatch_batches=False, even_batches=True, use_seedable_sampler=True, non_blocking=False, gradient_accumulation_kwargs=None, use_configured_state=False), deepspeed={'fp16': {'enabled': 'auto', 'loss_scale': 0, 'loss_scale_window': 1000, 'initial_scale_power': 16, 'hysteresis': 2, 'min_loss_scale': 1}, 'bf16': {'enabled': 'auto'}, 'zero_optimization': {'stage': 2, 'offload_optimizer': {'device': 'cpu', 'pin_memory': True}, 'allgather_partitions': True, 'allgather_bucket_size': 200000000.0, 'overlap_comm': False, 'reduce_scatter': True, 'reduce_bucket_size': 200000000.0, 'contiguous_gradients': True}, 'gradient_accumulation_steps': 'auto', 'gradient_clipping': 'auto', 'steps_per_print': 2000, 'train_batch_size': 'auto', 'train_micro_batch_size_per_gpu': 'auto', 'wall_clock_breakdown': False}, label_smoothing_factor=0.0, optim=<OptimizerNames.ADAMW_TORCH: 'adamw_torch'>, optim_args=None, adafactor=False, group_by_length=False, length_column_name='length', report_to=['wandb'], ddp_find_unused_parameters=None, ddp_bucket_cap_mb=None, ddp_broadcast_buffers=None, dataloader_pin_memory=True, dataloader_persistent_workers=False, skip_memory_metrics=True, use_legacy_prediction_loop=False, push_to_hub=False, resume_from_checkpoint=None, hub_model_id=None, hub_strategy=<HubStrategy.EVERY_SAVE: 'every_save'>, hub_token=None, hub_private_repo=None, hub_always_push=False, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, include_inputs_for_metrics=False, include_for_metrics=[], eval_do_concat_batches=True, fp16_backend='auto', push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=None, mp_parameters='', auto_find_batch_size=False, full_determinism=False, torchdynamo=None, ray_scope='last', ddp_timeout=1800, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, include_tokens_per_second=None, include_num_input_tokens_seen=None, neftune_noise_alpha=None, optim_target_modules=None, batch_eval_metrics=False, eval_on_start=False, use_liger_kernel=False, eval_use_gather_object=False, average_tokens_across_devices=None, sortish_sampler=False, predict_with_generate=False, generation_max_length=None, generation_num_beams=None, generation_config=None, check_model=True, acc_strategy='token', train_dataloader_shuffle=True, metric_warmup_step=0, fsdp_num=1, acc_steps=1, eval_use_evalscope=False, eval_datasets=[], eval_limit=None, eval_datasets_args=None, eval_generation_config=None, train_type='lora', optimizer=None, local_repo_path=None, galore_config=None)"
364
+ }
global_step43/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:610343ea8ebb469217556f61709cf34bdaa7717332d1f5a4983943ebc920ba93
3
+ size 7938412
global_step43/zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9f16c310fe8fffda3d57fb895398e8e90152a132dd0e28fe7987b298adc395b
3
+ size 45461549
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step43
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9bca4e577292ae88244f5871c72771c0b688c6cd492968636f3a6ddb284a50d
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bca94361ef12f23275dc7a7cd22f4f308e86d46a5672b030c6bfef3a3700d382
3
+ size 1064
trainer_state.json ADDED
@@ -0,0 +1,473 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": 43,
3
+ "best_metric": 3.79597425,
4
+ "best_model_checkpoint": "/workspace/output/v0-20250510-202602/checkpoint-43",
5
+ "epoch": 0.9842632331902719,
6
+ "eval_steps": 200,
7
+ "global_step": 43,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.022889842632331903,
14
+ "grad_norm": 0.5022401213645935,
15
+ "learning_rate": 2.5e-05,
16
+ "loss": 5.9138689041137695,
17
+ "memory(GiB)": 22.25,
18
+ "step": 1,
19
+ "token_acc": 0.2735191637630662,
20
+ "train_speed(iter/s)": 0.017618
21
+ },
22
+ {
23
+ "epoch": 0.045779685264663805,
24
+ "grad_norm": 0.4973876178264618,
25
+ "learning_rate": 5e-05,
26
+ "loss": 6.206646919250488,
27
+ "memory(GiB)": 22.25,
28
+ "step": 2,
29
+ "token_acc": 0.25411334552102377,
30
+ "train_speed(iter/s)": 0.024222
31
+ },
32
+ {
33
+ "epoch": 0.06866952789699571,
34
+ "grad_norm": 0.520351767539978,
35
+ "learning_rate": 4.992664502959351e-05,
36
+ "loss": 5.884594917297363,
37
+ "memory(GiB)": 22.25,
38
+ "step": 3,
39
+ "token_acc": 0.26119402985074625,
40
+ "train_speed(iter/s)": 0.027671
41
+ },
42
+ {
43
+ "epoch": 0.09155937052932761,
44
+ "grad_norm": 0.6917837262153625,
45
+ "learning_rate": 4.970701059450872e-05,
46
+ "loss": 5.813294887542725,
47
+ "memory(GiB)": 22.25,
48
+ "step": 4,
49
+ "token_acc": 0.2789115646258503,
50
+ "train_speed(iter/s)": 0.02975
51
+ },
52
+ {
53
+ "epoch": 0.11444921316165951,
54
+ "grad_norm": 0.8174898028373718,
55
+ "learning_rate": 4.934238559694448e-05,
56
+ "loss": 6.142425537109375,
57
+ "memory(GiB)": 22.25,
58
+ "step": 5,
59
+ "token_acc": 0.20984455958549222,
60
+ "train_speed(iter/s)": 0.031187
61
+ },
62
+ {
63
+ "epoch": 0.13733905579399142,
64
+ "grad_norm": 0.5081659555435181,
65
+ "learning_rate": 4.8834909801373264e-05,
66
+ "loss": 5.509262561798096,
67
+ "memory(GiB)": 22.25,
68
+ "step": 6,
69
+ "token_acc": 0.29264214046822745,
70
+ "train_speed(iter/s)": 0.032136
71
+ },
72
+ {
73
+ "epoch": 0.16022889842632332,
74
+ "grad_norm": 0.5285544395446777,
75
+ "learning_rate": 4.8187561277552374e-05,
76
+ "loss": 5.453015327453613,
77
+ "memory(GiB)": 22.25,
78
+ "step": 7,
79
+ "token_acc": 0.33134328358208953,
80
+ "train_speed(iter/s)": 0.032853
81
+ },
82
+ {
83
+ "epoch": 0.18311874105865522,
84
+ "grad_norm": 0.6126793026924133,
85
+ "learning_rate": 4.740413892402639e-05,
86
+ "loss": 5.514800071716309,
87
+ "memory(GiB)": 22.25,
88
+ "step": 8,
89
+ "token_acc": 0.24347826086956523,
90
+ "train_speed(iter/s)": 0.033481
91
+ },
92
+ {
93
+ "epoch": 0.20600858369098712,
94
+ "grad_norm": 0.5079677104949951,
95
+ "learning_rate": 4.648924017468003e-05,
96
+ "loss": 5.397139549255371,
97
+ "memory(GiB)": 22.25,
98
+ "step": 9,
99
+ "token_acc": 0.2693069306930693,
100
+ "train_speed(iter/s)": 0.033962
101
+ },
102
+ {
103
+ "epoch": 0.22889842632331903,
104
+ "grad_norm": 0.5848721861839294,
105
+ "learning_rate": 4.5448234019167945e-05,
106
+ "loss": 5.021652698516846,
107
+ "memory(GiB)": 22.25,
108
+ "step": 10,
109
+ "token_acc": 0.32229965156794427,
110
+ "train_speed(iter/s)": 0.034354
111
+ },
112
+ {
113
+ "epoch": 0.25178826895565093,
114
+ "grad_norm": 0.4369657635688782,
115
+ "learning_rate": 4.428722949554857e-05,
116
+ "loss": 5.207980155944824,
117
+ "memory(GiB)": 22.25,
118
+ "step": 11,
119
+ "token_acc": 0.34467455621301774,
120
+ "train_speed(iter/s)": 0.034653
121
+ },
122
+ {
123
+ "epoch": 0.27467811158798283,
124
+ "grad_norm": 0.7269682884216309,
125
+ "learning_rate": 4.301303984001967e-05,
126
+ "loss": 5.160121917724609,
127
+ "memory(GiB)": 22.25,
128
+ "step": 12,
129
+ "token_acc": 0.34941763727121466,
130
+ "train_speed(iter/s)": 0.034904
131
+ },
132
+ {
133
+ "epoch": 0.29756795422031473,
134
+ "grad_norm": 0.829106867313385,
135
+ "learning_rate": 4.163314250413913e-05,
136
+ "loss": 4.662051200866699,
137
+ "memory(GiB)": 22.25,
138
+ "step": 13,
139
+ "token_acc": 0.32751091703056767,
140
+ "train_speed(iter/s)": 0.035138
141
+ },
142
+ {
143
+ "epoch": 0.32045779685264664,
144
+ "grad_norm": 1.1529988050460815,
145
+ "learning_rate": 4.015563527416595e-05,
146
+ "loss": 5.173630237579346,
147
+ "memory(GiB)": 22.25,
148
+ "step": 14,
149
+ "token_acc": 0.28865979381443296,
150
+ "train_speed(iter/s)": 0.035337
151
+ },
152
+ {
153
+ "epoch": 0.34334763948497854,
154
+ "grad_norm": 0.7239392995834351,
155
+ "learning_rate": 3.858918875003053e-05,
156
+ "loss": 4.88520622253418,
157
+ "memory(GiB)": 22.25,
158
+ "step": 15,
159
+ "token_acc": 0.332089552238806,
160
+ "train_speed(iter/s)": 0.035497
161
+ },
162
+ {
163
+ "epoch": 0.36623748211731044,
164
+ "grad_norm": 0.5255656838417053,
165
+ "learning_rate": 3.694299546280657e-05,
166
+ "loss": 4.789463043212891,
167
+ "memory(GiB)": 22.25,
168
+ "step": 16,
169
+ "token_acc": 0.36082474226804123,
170
+ "train_speed(iter/s)": 0.035644
171
+ },
172
+ {
173
+ "epoch": 0.38912732474964234,
174
+ "grad_norm": 0.527284562587738,
175
+ "learning_rate": 3.5226715929283506e-05,
176
+ "loss": 5.008277416229248,
177
+ "memory(GiB)": 22.25,
178
+ "step": 17,
179
+ "token_acc": 0.3034188034188034,
180
+ "train_speed(iter/s)": 0.035798
181
+ },
182
+ {
183
+ "epoch": 0.41201716738197425,
184
+ "grad_norm": 0.6423527002334595,
185
+ "learning_rate": 3.3450421960212566e-05,
186
+ "loss": 4.778470039367676,
187
+ "memory(GiB)": 22.25,
188
+ "step": 18,
189
+ "token_acc": 0.3488372093023256,
190
+ "train_speed(iter/s)": 0.035907
191
+ },
192
+ {
193
+ "epoch": 0.43490701001430615,
194
+ "grad_norm": 0.4906652867794037,
195
+ "learning_rate": 3.162453755491655e-05,
196
+ "loss": 4.682660102844238,
197
+ "memory(GiB)": 22.25,
198
+ "step": 19,
199
+ "token_acc": 0.35555555555555557,
200
+ "train_speed(iter/s)": 0.036025
201
+ },
202
+ {
203
+ "epoch": 0.45779685264663805,
204
+ "grad_norm": 0.9560534358024597,
205
+ "learning_rate": 2.975977772911671e-05,
206
+ "loss": 4.940546989440918,
207
+ "memory(GiB)": 22.25,
208
+ "step": 20,
209
+ "token_acc": 0.36923076923076925,
210
+ "train_speed(iter/s)": 0.036093
211
+ },
212
+ {
213
+ "epoch": 0.48068669527896996,
214
+ "grad_norm": 0.5544789433479309,
215
+ "learning_rate": 2.7867085634960016e-05,
216
+ "loss": 4.366146087646484,
217
+ "memory(GiB)": 22.25,
218
+ "step": 21,
219
+ "token_acc": 0.3649906890130354,
220
+ "train_speed(iter/s)": 0.036168
221
+ },
222
+ {
223
+ "epoch": 0.5035765379113019,
224
+ "grad_norm": 0.4951302111148834,
225
+ "learning_rate": 2.595756834225089e-05,
226
+ "loss": 4.866259574890137,
227
+ "memory(GiB)": 22.25,
228
+ "step": 22,
229
+ "token_acc": 0.34402852049910876,
230
+ "train_speed(iter/s)": 0.036268
231
+ },
232
+ {
233
+ "epoch": 0.5264663805436338,
234
+ "grad_norm": 1.56654953956604,
235
+ "learning_rate": 2.4042431657749117e-05,
236
+ "loss": 4.790994644165039,
237
+ "memory(GiB)": 22.25,
238
+ "step": 23,
239
+ "token_acc": 0.3361522198731501,
240
+ "train_speed(iter/s)": 0.03635
241
+ },
242
+ {
243
+ "epoch": 0.5493562231759657,
244
+ "grad_norm": 0.529353678226471,
245
+ "learning_rate": 2.2132914365039993e-05,
246
+ "loss": 4.498373985290527,
247
+ "memory(GiB)": 22.25,
248
+ "step": 24,
249
+ "token_acc": 0.38278388278388276,
250
+ "train_speed(iter/s)": 0.036412
251
+ },
252
+ {
253
+ "epoch": 0.5722460658082976,
254
+ "grad_norm": 0.5923216342926025,
255
+ "learning_rate": 2.0240222270883288e-05,
256
+ "loss": 4.431886672973633,
257
+ "memory(GiB)": 22.25,
258
+ "step": 25,
259
+ "token_acc": 0.3901345291479821,
260
+ "train_speed(iter/s)": 0.036468
261
+ },
262
+ {
263
+ "epoch": 0.5951359084406295,
264
+ "grad_norm": 0.5044678449630737,
265
+ "learning_rate": 1.8375462445083464e-05,
266
+ "loss": 4.577709674835205,
267
+ "memory(GiB)": 22.25,
268
+ "step": 26,
269
+ "token_acc": 0.3509803921568627,
270
+ "train_speed(iter/s)": 0.036523
271
+ },
272
+ {
273
+ "epoch": 0.6180257510729614,
274
+ "grad_norm": 0.8515617251396179,
275
+ "learning_rate": 1.6549578039787436e-05,
276
+ "loss": 3.797635555267334,
277
+ "memory(GiB)": 22.25,
278
+ "step": 27,
279
+ "token_acc": 0.40134907251264756,
280
+ "train_speed(iter/s)": 0.036566
281
+ },
282
+ {
283
+ "epoch": 0.6409155937052933,
284
+ "grad_norm": 0.9012308120727539,
285
+ "learning_rate": 1.4773284070716503e-05,
286
+ "loss": 4.415590286254883,
287
+ "memory(GiB)": 22.25,
288
+ "step": 28,
289
+ "token_acc": 0.38589981447124305,
290
+ "train_speed(iter/s)": 0.036597
291
+ },
292
+ {
293
+ "epoch": 0.6638054363376252,
294
+ "grad_norm": 0.5051128268241882,
295
+ "learning_rate": 1.3057004537193423e-05,
296
+ "loss": 4.514218330383301,
297
+ "memory(GiB)": 22.25,
298
+ "step": 29,
299
+ "token_acc": 0.3765541740674956,
300
+ "train_speed(iter/s)": 0.036643
301
+ },
302
+ {
303
+ "epoch": 0.6866952789699571,
304
+ "grad_norm": 0.8118892908096313,
305
+ "learning_rate": 1.1410811249969475e-05,
306
+ "loss": 4.161840915679932,
307
+ "memory(GiB)": 22.25,
308
+ "step": 30,
309
+ "token_acc": 0.35412474849094566,
310
+ "train_speed(iter/s)": 0.036683
311
+ },
312
+ {
313
+ "epoch": 0.709585121602289,
314
+ "grad_norm": 0.7509729266166687,
315
+ "learning_rate": 9.844364725834057e-06,
316
+ "loss": 4.108524799346924,
317
+ "memory(GiB)": 22.25,
318
+ "step": 31,
319
+ "token_acc": 0.4240924092409241,
320
+ "train_speed(iter/s)": 0.036725
321
+ },
322
+ {
323
+ "epoch": 0.7324749642346209,
324
+ "grad_norm": 0.6745265126228333,
325
+ "learning_rate": 8.36685749586087e-06,
326
+ "loss": 4.507699489593506,
327
+ "memory(GiB)": 22.25,
328
+ "step": 32,
329
+ "token_acc": 0.35660377358490564,
330
+ "train_speed(iter/s)": 0.036768
331
+ },
332
+ {
333
+ "epoch": 0.7553648068669528,
334
+ "grad_norm": 0.5046018958091736,
335
+ "learning_rate": 6.986960159980327e-06,
336
+ "loss": 4.469419479370117,
337
+ "memory(GiB)": 22.25,
338
+ "step": 33,
339
+ "token_acc": 0.41550387596899224,
340
+ "train_speed(iter/s)": 0.036795
341
+ },
342
+ {
343
+ "epoch": 0.7782546494992847,
344
+ "grad_norm": 0.6278886198997498,
345
+ "learning_rate": 5.712770504451426e-06,
346
+ "loss": 4.4875640869140625,
347
+ "memory(GiB)": 22.25,
348
+ "step": 34,
349
+ "token_acc": 0.386411889596603,
350
+ "train_speed(iter/s)": 0.036831
351
+ },
352
+ {
353
+ "epoch": 0.8011444921316166,
354
+ "grad_norm": 1.2817845344543457,
355
+ "learning_rate": 4.551765980832059e-06,
356
+ "loss": 4.035043239593506,
357
+ "memory(GiB)": 22.25,
358
+ "step": 35,
359
+ "token_acc": 0.39222042139384117,
360
+ "train_speed(iter/s)": 0.036858
361
+ },
362
+ {
363
+ "epoch": 0.8240343347639485,
364
+ "grad_norm": 0.6294739246368408,
365
+ "learning_rate": 3.5107598253199758e-06,
366
+ "loss": 3.905367612838745,
367
+ "memory(GiB)": 22.25,
368
+ "step": 36,
369
+ "token_acc": 0.4039301310043668,
370
+ "train_speed(iter/s)": 0.036893
371
+ },
372
+ {
373
+ "epoch": 0.8469241773962805,
374
+ "grad_norm": 0.5308797359466553,
375
+ "learning_rate": 2.595861075973613e-06,
376
+ "loss": 3.832357883453369,
377
+ "memory(GiB)": 22.25,
378
+ "step": 37,
379
+ "token_acc": 0.37555555555555553,
380
+ "train_speed(iter/s)": 0.03692
381
+ },
382
+ {
383
+ "epoch": 0.8698140200286123,
384
+ "grad_norm": 0.613280177116394,
385
+ "learning_rate": 1.8124387224476347e-06,
386
+ "loss": 3.510023832321167,
387
+ "memory(GiB)": 22.25,
388
+ "step": 38,
389
+ "token_acc": 0.41849529780564265,
390
+ "train_speed(iter/s)": 0.036949
391
+ },
392
+ {
393
+ "epoch": 0.8927038626609443,
394
+ "grad_norm": 0.5897545218467712,
395
+ "learning_rate": 1.1650901986267365e-06,
396
+ "loss": 4.297924041748047,
397
+ "memory(GiB)": 22.25,
398
+ "step": 39,
399
+ "token_acc": 0.38562091503267976,
400
+ "train_speed(iter/s)": 0.036961
401
+ },
402
+ {
403
+ "epoch": 0.9155937052932761,
404
+ "grad_norm": 0.5033223032951355,
405
+ "learning_rate": 6.576144030555259e-07,
406
+ "loss": 3.912318229675293,
407
+ "memory(GiB)": 22.25,
408
+ "step": 40,
409
+ "token_acc": 0.3920792079207921,
410
+ "train_speed(iter/s)": 0.036991
411
+ },
412
+ {
413
+ "epoch": 0.9384835479256081,
414
+ "grad_norm": 0.44826453924179077,
415
+ "learning_rate": 2.9298940549128964e-07,
416
+ "loss": 3.7790920734405518,
417
+ "memory(GiB)": 22.25,
418
+ "step": 41,
419
+ "token_acc": 0.4283464566929134,
420
+ "train_speed(iter/s)": 0.03701
421
+ },
422
+ {
423
+ "epoch": 0.9613733905579399,
424
+ "grad_norm": 0.8731946349143982,
425
+ "learning_rate": 7.335497040648898e-08,
426
+ "loss": 4.0045576095581055,
427
+ "memory(GiB)": 22.25,
428
+ "step": 42,
429
+ "token_acc": 0.3923076923076923,
430
+ "train_speed(iter/s)": 0.03704
431
+ },
432
+ {
433
+ "epoch": 0.9842632331902719,
434
+ "grad_norm": 1.097395420074463,
435
+ "learning_rate": 0.0,
436
+ "loss": 4.415482521057129,
437
+ "memory(GiB)": 22.25,
438
+ "step": 43,
439
+ "token_acc": 0.4146341463414634,
440
+ "train_speed(iter/s)": 0.037059
441
+ },
442
+ {
443
+ "epoch": 0.9842632331902719,
444
+ "eval_loss": 3.7959742546081543,
445
+ "eval_runtime": 29.3121,
446
+ "eval_samples_per_second": 9.996,
447
+ "eval_steps_per_second": 1.262,
448
+ "eval_token_acc": 0.4216255442670537,
449
+ "step": 43
450
+ }
451
+ ],
452
+ "logging_steps": 1,
453
+ "max_steps": 43,
454
+ "num_input_tokens_seen": 0,
455
+ "num_train_epochs": 1,
456
+ "save_steps": 500,
457
+ "stateful_callbacks": {
458
+ "TrainerControl": {
459
+ "args": {
460
+ "should_epoch_stop": false,
461
+ "should_evaluate": false,
462
+ "should_log": false,
463
+ "should_save": true,
464
+ "should_training_stop": true
465
+ },
466
+ "attributes": {}
467
+ }
468
+ },
469
+ "total_flos": 4.042062092776243e+16,
470
+ "train_batch_size": 8,
471
+ "trial_name": null,
472
+ "trial_params": null
473
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4cfb5ec78c88569887e9776c3d49f121a00e5951d46784a7be97c48bc89f6b53
3
+ size 7736
zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)