update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- ai_light_dance
|
6 |
+
metrics:
|
7 |
+
- wer
|
8 |
+
model-index:
|
9 |
+
- name: ai-light-dance_drums_ft_pretrain_wav2vec2-base-new_onset-idmt-mdb-enst-2
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Automatic Speech Recognition
|
13 |
+
type: automatic-speech-recognition
|
14 |
+
dataset:
|
15 |
+
name: ai_light_dance
|
16 |
+
type: ai_light_dance
|
17 |
+
config: onset-idmt-mdb-enst-2
|
18 |
+
split: train
|
19 |
+
args: onset-idmt-mdb-enst-2
|
20 |
+
metrics:
|
21 |
+
- name: Wer
|
22 |
+
type: wer
|
23 |
+
value: 0.34289329396878954
|
24 |
+
---
|
25 |
+
|
26 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
27 |
+
should probably proofread and complete it, then remove this comment. -->
|
28 |
+
|
29 |
+
# ai-light-dance_drums_ft_pretrain_wav2vec2-base-new_onset-idmt-mdb-enst-2
|
30 |
+
|
31 |
+
This model is a fine-tuned version of [gary109/ai-light-dance_drums_ft_pretrain_wav2vec2-base-new_onset-idmt-mdb-2](https://huggingface.co/gary109/ai-light-dance_drums_ft_pretrain_wav2vec2-base-new_onset-idmt-mdb-2) on the ai_light_dance dataset.
|
32 |
+
It achieves the following results on the evaluation set:
|
33 |
+
- Loss: 0.7762
|
34 |
+
- Wer: 0.3429
|
35 |
+
|
36 |
+
## Model description
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Intended uses & limitations
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Training and evaluation data
|
45 |
+
|
46 |
+
More information needed
|
47 |
+
|
48 |
+
## Training procedure
|
49 |
+
|
50 |
+
### Training hyperparameters
|
51 |
+
|
52 |
+
The following hyperparameters were used during training:
|
53 |
+
- learning_rate: 0.0003
|
54 |
+
- train_batch_size: 4
|
55 |
+
- eval_batch_size: 4
|
56 |
+
- seed: 42
|
57 |
+
- gradient_accumulation_steps: 4
|
58 |
+
- total_train_batch_size: 16
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- lr_scheduler_warmup_steps: 30
|
62 |
+
- num_epochs: 100.0
|
63 |
+
- mixed_precision_training: Native AMP
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
69 |
+
| 1.4226 | 0.99 | 35 | 2.0435 | 0.4154 |
|
70 |
+
| 0.8744 | 1.99 | 70 | 1.7193 | 0.4382 |
|
71 |
+
| 0.9474 | 2.99 | 105 | 1.7853 | 0.4374 |
|
72 |
+
| 0.8316 | 3.99 | 140 | 1.2827 | 0.4306 |
|
73 |
+
| 0.8336 | 4.99 | 175 | 1.0676 | 0.4040 |
|
74 |
+
| 0.7345 | 5.99 | 210 | 1.5364 | 0.4264 |
|
75 |
+
| 0.6666 | 6.99 | 245 | 1.4284 | 0.4585 |
|
76 |
+
| 0.6677 | 7.99 | 280 | 0.9475 | 0.4003 |
|
77 |
+
| 0.6779 | 8.99 | 315 | 1.1172 | 0.4209 |
|
78 |
+
| 0.6503 | 9.99 | 350 | 0.8999 | 0.3834 |
|
79 |
+
| 0.6159 | 10.99 | 385 | 1.1501 | 0.4386 |
|
80 |
+
| 0.6831 | 11.99 | 420 | 1.0860 | 0.3825 |
|
81 |
+
| 0.5959 | 12.99 | 455 | 0.9410 | 0.4045 |
|
82 |
+
| 0.7154 | 13.99 | 490 | 1.0463 | 0.3821 |
|
83 |
+
| 0.6094 | 14.99 | 525 | 0.8598 | 0.3965 |
|
84 |
+
| 0.6929 | 15.99 | 560 | 0.9494 | 0.3931 |
|
85 |
+
| 0.7627 | 16.99 | 595 | 0.8060 | 0.3948 |
|
86 |
+
| 0.601 | 17.99 | 630 | 0.9890 | 0.3965 |
|
87 |
+
| 0.546 | 18.99 | 665 | 0.8059 | 0.3990 |
|
88 |
+
| 0.5222 | 19.99 | 700 | 0.6379 | 0.3792 |
|
89 |
+
| 0.5802 | 20.99 | 735 | 0.6995 | 0.3661 |
|
90 |
+
| 0.5731 | 21.99 | 770 | 0.8405 | 0.3606 |
|
91 |
+
| 0.5462 | 22.99 | 805 | 0.6667 | 0.3965 |
|
92 |
+
| 0.6057 | 23.99 | 840 | 0.8396 | 0.3762 |
|
93 |
+
| 0.5323 | 24.99 | 875 | 0.9054 | 0.3952 |
|
94 |
+
| 0.683 | 25.99 | 910 | 0.6898 | 0.4062 |
|
95 |
+
| 0.525 | 26.99 | 945 | 0.7245 | 0.3884 |
|
96 |
+
| 0.4885 | 27.99 | 980 | 0.8076 | 0.4049 |
|
97 |
+
| 0.4653 | 28.99 | 1015 | 0.8100 | 0.3838 |
|
98 |
+
| 0.4827 | 29.99 | 1050 | 0.7247 | 0.3863 |
|
99 |
+
| 0.4839 | 30.99 | 1085 | 0.7009 | 0.3817 |
|
100 |
+
| 0.4982 | 31.99 | 1120 | 0.7637 | 0.3914 |
|
101 |
+
| 0.6105 | 32.99 | 1155 | 0.7343 | 0.3914 |
|
102 |
+
| 0.4936 | 33.99 | 1190 | 0.7390 | 0.3762 |
|
103 |
+
| 0.4674 | 34.99 | 1225 | 0.6724 | 0.3581 |
|
104 |
+
| 0.4677 | 35.99 | 1260 | 0.6730 | 0.3488 |
|
105 |
+
| 0.516 | 36.99 | 1295 | 0.6956 | 0.3728 |
|
106 |
+
| 0.4507 | 37.99 | 1330 | 0.6483 | 0.3615 |
|
107 |
+
| 0.4207 | 38.99 | 1365 | 0.7718 | 0.3484 |
|
108 |
+
| 0.4803 | 39.99 | 1400 | 0.8316 | 0.3775 |
|
109 |
+
| 0.3946 | 40.99 | 1435 | 0.8322 | 0.3568 |
|
110 |
+
| 0.411 | 41.99 | 1470 | 0.9933 | 0.3707 |
|
111 |
+
| 0.4405 | 42.99 | 1505 | 0.8789 | 0.3943 |
|
112 |
+
| 0.5124 | 43.99 | 1540 | 0.9030 | 0.3707 |
|
113 |
+
| 0.5959 | 44.99 | 1575 | 0.7809 | 0.3948 |
|
114 |
+
| 0.3841 | 45.99 | 1610 | 0.7716 | 0.3965 |
|
115 |
+
| 0.3975 | 46.99 | 1645 | 0.7064 | 0.3931 |
|
116 |
+
| 1.4983 | 47.99 | 1680 | 3.2866 | 0.3627 |
|
117 |
+
| 0.3962 | 48.99 | 1715 | 0.6486 | 0.3648 |
|
118 |
+
| 0.4422 | 49.99 | 1750 | 0.8450 | 0.3779 |
|
119 |
+
| 0.4198 | 50.99 | 1785 | 0.7628 | 0.3564 |
|
120 |
+
| 0.3577 | 51.99 | 1820 | 0.7553 | 0.3678 |
|
121 |
+
| 0.4425 | 52.99 | 1855 | 0.7566 | 0.3716 |
|
122 |
+
| 0.3492 | 53.99 | 1890 | 0.7710 | 0.3631 |
|
123 |
+
| 0.3731 | 54.99 | 1925 | 0.7737 | 0.3627 |
|
124 |
+
| 0.3868 | 55.99 | 1960 | 0.7021 | 0.3572 |
|
125 |
+
| 0.3311 | 56.99 | 1995 | 0.6603 | 0.3518 |
|
126 |
+
| 0.3993 | 57.99 | 2030 | 0.6664 | 0.3581 |
|
127 |
+
| 0.4226 | 58.99 | 2065 | 0.6813 | 0.3551 |
|
128 |
+
| 0.4143 | 59.99 | 2100 | 0.6567 | 0.3568 |
|
129 |
+
| 0.3623 | 60.99 | 2135 | 0.6568 | 0.3454 |
|
130 |
+
| 0.3228 | 61.99 | 2170 | 0.7326 | 0.3568 |
|
131 |
+
| 0.3204 | 62.99 | 2205 | 0.7277 | 0.3640 |
|
132 |
+
| 0.377 | 63.99 | 2240 | 0.7145 | 0.3585 |
|
133 |
+
| 0.3487 | 64.99 | 2275 | 0.6943 | 0.3505 |
|
134 |
+
| 0.343 | 65.99 | 2310 | 0.7461 | 0.3395 |
|
135 |
+
| 0.3251 | 66.99 | 2345 | 0.7442 | 0.3564 |
|
136 |
+
| 0.3135 | 67.99 | 2380 | 0.7331 | 0.3530 |
|
137 |
+
| 0.381 | 68.99 | 2415 | 0.7306 | 0.3513 |
|
138 |
+
| 0.3319 | 69.99 | 2450 | 0.8495 | 0.3484 |
|
139 |
+
| 0.3552 | 70.99 | 2485 | 0.7546 | 0.3551 |
|
140 |
+
| 0.3292 | 71.99 | 2520 | 0.7483 | 0.3450 |
|
141 |
+
| 0.3041 | 72.99 | 2555 | 0.7305 | 0.3522 |
|
142 |
+
| 0.3606 | 73.99 | 2590 | 0.7358 | 0.3484 |
|
143 |
+
| 0.3629 | 74.99 | 2625 | 0.7709 | 0.3446 |
|
144 |
+
| 0.3409 | 75.99 | 2660 | 0.7568 | 0.3585 |
|
145 |
+
| 0.3315 | 76.99 | 2695 | 0.7466 | 0.3475 |
|
146 |
+
| 0.2934 | 77.99 | 2730 | 0.7351 | 0.3496 |
|
147 |
+
| 0.3366 | 78.99 | 2765 | 0.8014 | 0.3484 |
|
148 |
+
| 0.3176 | 79.99 | 2800 | 0.8014 | 0.3420 |
|
149 |
+
| 0.3319 | 80.99 | 2835 | 0.7996 | 0.3437 |
|
150 |
+
| 0.2967 | 81.99 | 2870 | 0.8156 | 0.3412 |
|
151 |
+
| 0.3137 | 82.99 | 2905 | 0.8025 | 0.3361 |
|
152 |
+
| 0.3133 | 83.99 | 2940 | 0.7784 | 0.3416 |
|
153 |
+
| 0.3134 | 84.99 | 2975 | 0.7894 | 0.3336 |
|
154 |
+
| 0.3216 | 85.99 | 3010 | 0.8331 | 0.3395 |
|
155 |
+
| 0.365 | 86.99 | 3045 | 0.7980 | 0.3353 |
|
156 |
+
| 0.2962 | 87.99 | 3080 | 0.7965 | 0.3404 |
|
157 |
+
| 0.3126 | 88.99 | 3115 | 0.7470 | 0.3420 |
|
158 |
+
| 0.2843 | 89.99 | 3150 | 0.7788 | 0.3404 |
|
159 |
+
| 0.2967 | 90.99 | 3185 | 0.7902 | 0.3374 |
|
160 |
+
| 0.3171 | 91.99 | 3220 | 0.8022 | 0.3404 |
|
161 |
+
| 0.3069 | 92.99 | 3255 | 0.7999 | 0.3345 |
|
162 |
+
| 0.3571 | 93.99 | 3290 | 0.7896 | 0.3404 |
|
163 |
+
| 0.2805 | 94.99 | 3325 | 0.7831 | 0.3391 |
|
164 |
+
| 0.3099 | 95.99 | 3360 | 0.7909 | 0.3366 |
|
165 |
+
| 0.2868 | 96.99 | 3395 | 0.7918 | 0.3395 |
|
166 |
+
| 0.2626 | 97.99 | 3430 | 0.7766 | 0.3429 |
|
167 |
+
| 0.2634 | 98.99 | 3465 | 0.7770 | 0.3437 |
|
168 |
+
| 0.288 | 99.99 | 3500 | 0.7762 | 0.3429 |
|
169 |
+
|
170 |
+
|
171 |
+
### Framework versions
|
172 |
+
|
173 |
+
- Transformers 4.25.0.dev0
|
174 |
+
- Pytorch 1.8.1+cu111
|
175 |
+
- Datasets 2.7.1.dev0
|
176 |
+
- Tokenizers 0.13.2
|