Upload folder using huggingface_hub
Browse files- README.md +7 -0
- build.toml +18 -0
- csrc/batch_invariant.cu +315 -0
- flake.nix +17 -0
- torch-ext/batch_invariant/__init__.py +120 -0
- torch-ext/torch_binding.cpp +15 -0
- torch-ext/torch_binding.h +17 -0
README.md
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- kernel
|
5 |
+
---
|
6 |
+
|
7 |
+
# batch_invariant_kernel
|
build.toml
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[general]
|
2 |
+
name = "batch_invariant"
|
3 |
+
universal = false
|
4 |
+
|
5 |
+
# Defines the C++ files that bind to PyTorch
|
6 |
+
[torch]
|
7 |
+
src = [
|
8 |
+
"torch-ext/torch_binding.cpp",
|
9 |
+
"torch-ext/torch_binding.h"
|
10 |
+
]
|
11 |
+
|
12 |
+
# Defines the CUDA kernels
|
13 |
+
[kernel.batch_invariant_matmul]
|
14 |
+
backend = "cuda"
|
15 |
+
depends = ["torch"]
|
16 |
+
src = [
|
17 |
+
"csrc/batch_invariant.cu",
|
18 |
+
]
|
csrc/batch_invariant.cu
ADDED
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <torch/extension.h>
|
2 |
+
#include <cuda_runtime.h>
|
3 |
+
#include <cublas_v2.h>
|
4 |
+
#include <cudnn.h>
|
5 |
+
#include <cmath>
|
6 |
+
|
7 |
+
// Persistent matrix multiplication kernel
|
8 |
+
__global__ void matmul_kernel_persistent(
|
9 |
+
const float *a_ptr,
|
10 |
+
const float *b_ptr,
|
11 |
+
float *c_ptr,
|
12 |
+
const float *bias_ptr,
|
13 |
+
int M, int N, int K,
|
14 |
+
int stride_am, int stride_ak,
|
15 |
+
int stride_bk, int stride_bn,
|
16 |
+
int stride_cm, int stride_cn,
|
17 |
+
int BLOCK_SIZE_M, int BLOCK_SIZE_N, int BLOCK_SIZE_K,
|
18 |
+
int GROUP_SIZE_M, int NUM_SMS,
|
19 |
+
bool HAS_BIAS)
|
20 |
+
{
|
21 |
+
int start_pid = blockIdx.x;
|
22 |
+
int num_pid_m = (M + BLOCK_SIZE_M - 1) / BLOCK_SIZE_M;
|
23 |
+
int num_pid_n = (N + BLOCK_SIZE_N - 1) / BLOCK_SIZE_N;
|
24 |
+
int k_tiles = (K + BLOCK_SIZE_K - 1) / BLOCK_SIZE_K;
|
25 |
+
int num_tiles = num_pid_m * num_pid_n;
|
26 |
+
|
27 |
+
int num_pid_in_group = GROUP_SIZE_M * num_pid_n;
|
28 |
+
|
29 |
+
for (int tile_id = start_pid; tile_id < num_tiles; tile_id += NUM_SMS)
|
30 |
+
{
|
31 |
+
int group_id = tile_id / num_pid_in_group;
|
32 |
+
int first_pid_m = group_id * GROUP_SIZE_M;
|
33 |
+
int group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M);
|
34 |
+
int pid_m = first_pid_m + (tile_id % group_size_m);
|
35 |
+
int pid_n = (tile_id % num_pid_in_group) / group_size_m;
|
36 |
+
|
37 |
+
int start_m = pid_m * BLOCK_SIZE_M;
|
38 |
+
int start_n = pid_n * BLOCK_SIZE_N;
|
39 |
+
|
40 |
+
// Shared memory for tile computation
|
41 |
+
__shared__ float As[16][16]; // Adjust size based on BLOCK_SIZE
|
42 |
+
__shared__ float Bs[16][16];
|
43 |
+
|
44 |
+
float accumulator = 0.0f;
|
45 |
+
int tx = threadIdx.x;
|
46 |
+
int ty = threadIdx.y;
|
47 |
+
|
48 |
+
// Bounds checking
|
49 |
+
if (start_m + tx < M && start_n + ty < N)
|
50 |
+
{
|
51 |
+
// K-dimension loop
|
52 |
+
for (int ki = 0; ki < k_tiles; ki++)
|
53 |
+
{
|
54 |
+
int k_start = ki * BLOCK_SIZE_K;
|
55 |
+
|
56 |
+
// Load tiles into shared memory
|
57 |
+
if (k_start + tx < K && start_m + ty < M)
|
58 |
+
{
|
59 |
+
As[ty][tx] = a_ptr[(start_m + ty) * stride_am + (k_start + tx) * stride_ak];
|
60 |
+
}
|
61 |
+
else
|
62 |
+
{
|
63 |
+
As[ty][tx] = 0.0f;
|
64 |
+
}
|
65 |
+
|
66 |
+
if (k_start + ty < K && start_n + tx < N)
|
67 |
+
{
|
68 |
+
Bs[ty][tx] = b_ptr[(k_start + ty) * stride_bk + (start_n + tx) * stride_bn];
|
69 |
+
}
|
70 |
+
else
|
71 |
+
{
|
72 |
+
Bs[ty][tx] = 0.0f;
|
73 |
+
}
|
74 |
+
|
75 |
+
__syncthreads();
|
76 |
+
|
77 |
+
// Compute partial dot product
|
78 |
+
for (int k = 0; k < min(BLOCK_SIZE_K, K - k_start); k++)
|
79 |
+
{
|
80 |
+
accumulator += As[ty][k] * Bs[k][tx];
|
81 |
+
}
|
82 |
+
|
83 |
+
__syncthreads();
|
84 |
+
}
|
85 |
+
|
86 |
+
// Add bias if present
|
87 |
+
if (HAS_BIAS && bias_ptr != nullptr)
|
88 |
+
{
|
89 |
+
accumulator += bias_ptr[start_n + tx];
|
90 |
+
}
|
91 |
+
|
92 |
+
// Store result
|
93 |
+
c_ptr[(start_m + ty) * stride_cm + (start_n + tx) * stride_cn] = accumulator;
|
94 |
+
}
|
95 |
+
}
|
96 |
+
}
|
97 |
+
|
98 |
+
// Log softmax kernel
|
99 |
+
__global__ void log_softmax_kernel(
|
100 |
+
const float *input_ptr,
|
101 |
+
float *output_ptr,
|
102 |
+
int input_row_stride,
|
103 |
+
int output_row_stride,
|
104 |
+
int n_cols,
|
105 |
+
int BLOCK_SIZE)
|
106 |
+
{
|
107 |
+
int row_idx = blockIdx.x;
|
108 |
+
int tid = threadIdx.x;
|
109 |
+
|
110 |
+
// Find maximum value in the row for numerical stability
|
111 |
+
__shared__ float max_val;
|
112 |
+
__shared__ float sum_exp;
|
113 |
+
|
114 |
+
if (tid == 0)
|
115 |
+
{
|
116 |
+
max_val = -INFINITY;
|
117 |
+
sum_exp = 0.0f;
|
118 |
+
}
|
119 |
+
__syncthreads();
|
120 |
+
|
121 |
+
// Reduction to find max
|
122 |
+
float thread_max = -INFINITY;
|
123 |
+
for (int col = tid; col < n_cols; col += blockDim.x)
|
124 |
+
{
|
125 |
+
float val = input_ptr[row_idx * input_row_stride + col];
|
126 |
+
thread_max = fmaxf(thread_max, val);
|
127 |
+
}
|
128 |
+
|
129 |
+
// Block-wide reduction for max
|
130 |
+
__shared__ float sdata[256];
|
131 |
+
sdata[tid] = thread_max;
|
132 |
+
__syncthreads();
|
133 |
+
|
134 |
+
for (int s = blockDim.x / 2; s > 0; s >>= 1)
|
135 |
+
{
|
136 |
+
if (tid < s)
|
137 |
+
{
|
138 |
+
sdata[tid] = fmaxf(sdata[tid], sdata[tid + s]);
|
139 |
+
}
|
140 |
+
__syncthreads();
|
141 |
+
}
|
142 |
+
|
143 |
+
if (tid == 0)
|
144 |
+
{
|
145 |
+
max_val = sdata[0];
|
146 |
+
}
|
147 |
+
__syncthreads();
|
148 |
+
|
149 |
+
// Compute sum of exp(x - max_val)
|
150 |
+
float thread_sum = 0.0f;
|
151 |
+
for (int col = tid; col < n_cols; col += blockDim.x)
|
152 |
+
{
|
153 |
+
float val = input_ptr[row_idx * input_row_stride + col];
|
154 |
+
thread_sum += expf(val - max_val);
|
155 |
+
}
|
156 |
+
|
157 |
+
// Block-wide reduction for sum
|
158 |
+
sdata[tid] = thread_sum;
|
159 |
+
__syncthreads();
|
160 |
+
|
161 |
+
for (int s = blockDim.x / 2; s > 0; s >>= 1)
|
162 |
+
{
|
163 |
+
if (tid < s)
|
164 |
+
{
|
165 |
+
sdata[tid] += sdata[tid + s];
|
166 |
+
}
|
167 |
+
__syncthreads();
|
168 |
+
}
|
169 |
+
|
170 |
+
if (tid == 0)
|
171 |
+
{
|
172 |
+
sum_exp = sdata[0];
|
173 |
+
}
|
174 |
+
__syncthreads();
|
175 |
+
|
176 |
+
float log_sum_exp = logf(sum_exp);
|
177 |
+
|
178 |
+
// Compute final log_softmax values
|
179 |
+
for (int col = tid; col < n_cols; col += blockDim.x)
|
180 |
+
{
|
181 |
+
float val = input_ptr[row_idx * input_row_stride + col];
|
182 |
+
output_ptr[row_idx * output_row_stride + col] = val - max_val - log_sum_exp;
|
183 |
+
}
|
184 |
+
}
|
185 |
+
|
186 |
+
// Mean reduction kernel
|
187 |
+
__global__ void mean_kernel(
|
188 |
+
const float *input_ptr,
|
189 |
+
float *output_ptr,
|
190 |
+
int input_stride0, int input_stride1, int input_stride2,
|
191 |
+
int output_stride0, int output_stride1,
|
192 |
+
int M, int N, int K,
|
193 |
+
int BLOCK_SIZE)
|
194 |
+
{
|
195 |
+
int pid = blockIdx.x * blockDim.x + threadIdx.x;
|
196 |
+
|
197 |
+
if (pid >= M * K)
|
198 |
+
return;
|
199 |
+
|
200 |
+
int m_idx = pid / K;
|
201 |
+
int k_idx = pid % K;
|
202 |
+
|
203 |
+
float acc = 0.0f;
|
204 |
+
for (int n = 0; n < N; n++)
|
205 |
+
{
|
206 |
+
int input_idx = m_idx * input_stride0 + n * input_stride1 + k_idx * input_stride2;
|
207 |
+
acc += input_ptr[input_idx];
|
208 |
+
}
|
209 |
+
|
210 |
+
float mean_val = acc / N;
|
211 |
+
int output_idx = m_idx * output_stride0 + k_idx * output_stride1;
|
212 |
+
output_ptr[output_idx] = mean_val;
|
213 |
+
}
|
214 |
+
|
215 |
+
// Host functions that launch the kernels
|
216 |
+
void matmul_persistent_cuda(
|
217 |
+
torch::Tensor const &a,
|
218 |
+
torch::Tensor const &b,
|
219 |
+
torch::Tensor &c,
|
220 |
+
torch::Tensor const &bias)
|
221 |
+
{
|
222 |
+
const int M = a.size(0);
|
223 |
+
const int K = a.size(1);
|
224 |
+
const int N = b.size(1);
|
225 |
+
|
226 |
+
// Get device properties
|
227 |
+
cudaDeviceProp prop;
|
228 |
+
cudaGetDeviceProperties(&prop, 0);
|
229 |
+
const int NUM_SMS = prop.multiProcessorCount;
|
230 |
+
|
231 |
+
// Block sizes
|
232 |
+
const int BLOCK_SIZE_M = 128;
|
233 |
+
const int BLOCK_SIZE_N = 128;
|
234 |
+
const int BLOCK_SIZE_K = 64;
|
235 |
+
const int GROUP_SIZE_M = 8;
|
236 |
+
|
237 |
+
// Grid configuration
|
238 |
+
const int num_pid_m = (M + BLOCK_SIZE_M - 1) / BLOCK_SIZE_M;
|
239 |
+
const int num_pid_n = (N + BLOCK_SIZE_N - 1) / BLOCK_SIZE_N;
|
240 |
+
const int grid_size = min(NUM_SMS, num_pid_m * num_pid_n);
|
241 |
+
|
242 |
+
dim3 block(16, 16);
|
243 |
+
dim3 grid_dim(grid_size);
|
244 |
+
|
245 |
+
matmul_kernel_persistent<<<grid_dim, block>>>(
|
246 |
+
a.data_ptr<float>(),
|
247 |
+
b.data_ptr<float>(),
|
248 |
+
c.data_ptr<float>(),
|
249 |
+
bias.defined() ? bias.data_ptr<float>() : nullptr,
|
250 |
+
M, N, K,
|
251 |
+
a.stride(0), a.stride(1),
|
252 |
+
b.stride(0), b.stride(1),
|
253 |
+
c.stride(0), c.stride(1),
|
254 |
+
BLOCK_SIZE_M, BLOCK_SIZE_N, BLOCK_SIZE_K,
|
255 |
+
GROUP_SIZE_M, NUM_SMS,
|
256 |
+
bias.defined());
|
257 |
+
}
|
258 |
+
|
259 |
+
void log_softmax_cuda(
|
260 |
+
torch::Tensor const &input,
|
261 |
+
torch::Tensor &output)
|
262 |
+
{
|
263 |
+
const auto original_shape = input.sizes();
|
264 |
+
auto input_2d = input.reshape({-1, input.size(-1)}).contiguous();
|
265 |
+
auto output_2d = output.reshape({-1, output.size(-1)});
|
266 |
+
|
267 |
+
const int n_rows = input_2d.size(0);
|
268 |
+
const int n_cols = input_2d.size(1);
|
269 |
+
|
270 |
+
const int BLOCK_SIZE = 256;
|
271 |
+
|
272 |
+
log_softmax_kernel<<<n_rows, BLOCK_SIZE>>>(
|
273 |
+
input_2d.data_ptr<float>(),
|
274 |
+
output_2d.data_ptr<float>(),
|
275 |
+
input_2d.stride(0),
|
276 |
+
output_2d.stride(0),
|
277 |
+
n_cols,
|
278 |
+
BLOCK_SIZE);
|
279 |
+
}
|
280 |
+
|
281 |
+
void mean_dim_cuda(
|
282 |
+
torch::Tensor const &input,
|
283 |
+
torch::Tensor &output,
|
284 |
+
int dim)
|
285 |
+
{
|
286 |
+
auto shape = input.sizes().vec();
|
287 |
+
|
288 |
+
int M = 1;
|
289 |
+
for (int i = 0; i < dim; i++)
|
290 |
+
{
|
291 |
+
M *= shape[i];
|
292 |
+
}
|
293 |
+
|
294 |
+
int N = shape[dim];
|
295 |
+
|
296 |
+
int K = 1;
|
297 |
+
for (int i = dim + 1; i < shape.size(); i++)
|
298 |
+
{
|
299 |
+
K *= shape[i];
|
300 |
+
}
|
301 |
+
|
302 |
+
auto input_3d = input.reshape({M, N, K});
|
303 |
+
auto output_2d = output.reshape({M, K});
|
304 |
+
|
305 |
+
const int BLOCK_SIZE = 256;
|
306 |
+
const int grid_size = (M * K + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
307 |
+
|
308 |
+
mean_kernel<<<grid_size, BLOCK_SIZE>>>(
|
309 |
+
input_3d.data_ptr<float>(),
|
310 |
+
output_2d.data_ptr<float>(),
|
311 |
+
input_3d.stride(0), input_3d.stride(1), input_3d.stride(2),
|
312 |
+
output_2d.stride(0), output_2d.stride(1),
|
313 |
+
M, N, K,
|
314 |
+
BLOCK_SIZE);
|
315 |
+
}
|
flake.nix
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
description = "Flake for batch_invariant kernel";
|
3 |
+
|
4 |
+
inputs = {
|
5 |
+
kernel-builder.url = "github:huggingface/kernel-builder";
|
6 |
+
};
|
7 |
+
|
8 |
+
outputs =
|
9 |
+
{
|
10 |
+
self,
|
11 |
+
kernel-builder,
|
12 |
+
}:
|
13 |
+
kernel-builder.lib.genFlakeOutputs {
|
14 |
+
path = ./.;
|
15 |
+
rev = self.shortRev or self.dirtyShortRev or self.lastModifiedDate;
|
16 |
+
};
|
17 |
+
}
|
torch-ext/batch_invariant/__init__.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from ._ops import ops
|
3 |
+
|
4 |
+
|
5 |
+
def matmul_persistent(
|
6 |
+
a: torch.Tensor, b: torch.Tensor, bias: torch.Tensor = None
|
7 |
+
) -> torch.Tensor:
|
8 |
+
"""
|
9 |
+
Persistent matrix multiplication with optional bias.
|
10 |
+
|
11 |
+
Args:
|
12 |
+
a: Input tensor of shape (M, K)
|
13 |
+
b: Input tensor of shape (K, N)
|
14 |
+
bias: Optional bias tensor of shape (N,)
|
15 |
+
|
16 |
+
Returns:
|
17 |
+
Output tensor of shape (M, N)
|
18 |
+
"""
|
19 |
+
assert a.shape[1] == b.shape[0], "Incompatible dimensions"
|
20 |
+
assert a.dtype == b.dtype, "Incompatible dtypes"
|
21 |
+
assert bias is None or bias.dim() == 1, "Bias must be 1D"
|
22 |
+
|
23 |
+
M, K = a.shape
|
24 |
+
K, N = b.shape
|
25 |
+
|
26 |
+
c = torch.empty((M, N), device=a.device, dtype=a.dtype)
|
27 |
+
ops.matmul_persistent(a, b, c, bias)
|
28 |
+
|
29 |
+
return c
|
30 |
+
|
31 |
+
|
32 |
+
def log_softmax(input: torch.Tensor, dim: int = -1) -> torch.Tensor:
|
33 |
+
"""
|
34 |
+
Compute log_softmax using custom CUDA kernel.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
input: Input tensor
|
38 |
+
dim: Dimension along which to compute log_softmax (only -1 supported)
|
39 |
+
|
40 |
+
Returns:
|
41 |
+
Tensor with log_softmax applied
|
42 |
+
"""
|
43 |
+
if dim != -1 and dim != input.ndim - 1:
|
44 |
+
raise ValueError(
|
45 |
+
"This implementation only supports log_softmax along the last dimension"
|
46 |
+
)
|
47 |
+
|
48 |
+
output = torch.empty_like(input)
|
49 |
+
ops.log_softmax(input, output)
|
50 |
+
|
51 |
+
return output
|
52 |
+
|
53 |
+
|
54 |
+
def mean_dim(
|
55 |
+
input: torch.Tensor, dim: int, keepdim: bool = False, dtype: torch.dtype = None
|
56 |
+
) -> torch.Tensor:
|
57 |
+
"""
|
58 |
+
Compute mean along a single dimension.
|
59 |
+
|
60 |
+
Args:
|
61 |
+
input: Input tensor
|
62 |
+
dim: Single dimension along which to compute mean
|
63 |
+
keepdim: Whether to keep the reduced dimension
|
64 |
+
dtype: Output dtype
|
65 |
+
|
66 |
+
Returns:
|
67 |
+
Tensor with mean values along specified dimension
|
68 |
+
"""
|
69 |
+
assert input.is_cuda, "Input must be a CUDA tensor"
|
70 |
+
assert -input.ndim <= dim < input.ndim, f"Invalid dimension {dim}"
|
71 |
+
|
72 |
+
if dim < 0:
|
73 |
+
dim = dim + input.ndim
|
74 |
+
|
75 |
+
if dtype is None:
|
76 |
+
if input.dtype in [torch.int8, torch.int16, torch.int32, torch.int64]:
|
77 |
+
dtype = torch.float32
|
78 |
+
else:
|
79 |
+
dtype = input.dtype
|
80 |
+
|
81 |
+
if input.dtype != dtype:
|
82 |
+
input = input.to(dtype)
|
83 |
+
|
84 |
+
shape = list(input.shape)
|
85 |
+
|
86 |
+
if keepdim:
|
87 |
+
output_shape = shape.copy()
|
88 |
+
output_shape[dim] = 1
|
89 |
+
else:
|
90 |
+
output_shape = shape[:dim] + shape[dim + 1 :]
|
91 |
+
|
92 |
+
output = torch.empty(output_shape, dtype=dtype, device=input.device)
|
93 |
+
ops.mean_dim(input, output, dim)
|
94 |
+
|
95 |
+
return output
|
96 |
+
|
97 |
+
|
98 |
+
# Batch invariant mode functionality (if you still want the mode switching)
|
99 |
+
def mm_batch_invariant(a, b):
|
100 |
+
return matmul_persistent(a, b)
|
101 |
+
|
102 |
+
|
103 |
+
def addmm_batch_invariant(bias, a, b):
|
104 |
+
return matmul_persistent(a, b, bias=bias)
|
105 |
+
|
106 |
+
|
107 |
+
def _log_softmax_batch_invariant(input, dim, _half_to_float):
|
108 |
+
assert not _half_to_float, "not implemented"
|
109 |
+
return log_softmax(input, dim=dim)
|
110 |
+
|
111 |
+
|
112 |
+
def mean_batch_invariant(input, dim, keepdim=False, dtype: torch.dtype = None):
|
113 |
+
if len(dim) == 1:
|
114 |
+
return mean_dim(input, dim[0], keepdim=keepdim, dtype=dtype)
|
115 |
+
else:
|
116 |
+
# Multi-dimensional mean fallback
|
117 |
+
n_elems = 1
|
118 |
+
for d in dim:
|
119 |
+
n_elems *= input.shape[d]
|
120 |
+
return torch.sum(input, dim=dim, keepdim=keepdim, dtype=torch.float32) / n_elems
|
torch-ext/torch_binding.cpp
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <torch/extension.h>
|
2 |
+
#include "torch_binding.h"
|
3 |
+
|
4 |
+
TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops)
|
5 |
+
{
|
6 |
+
ops.def("matmul_persistent(Tensor a, Tensor b, Tensor! c, Tensor? bias) -> ()");
|
7 |
+
ops.def("log_softmax(Tensor input, Tensor! output) -> ()");
|
8 |
+
ops.def("mean_dim(Tensor input, Tensor! output, int dim) -> ()");
|
9 |
+
|
10 |
+
ops.impl("matmul_persistent", torch::kCUDA, &matmul_persistent_cuda);
|
11 |
+
ops.impl("log_softmax", torch::kCUDA, &log_softmax_cuda);
|
12 |
+
ops.impl("mean_dim", torch::kCUDA, &mean_dim_cuda);
|
13 |
+
}
|
14 |
+
|
15 |
+
REGISTER_EXTENSION(TORCH_EXTENSION_NAME)
|
torch-ext/torch_binding.h
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <torch/extension.h>
|
3 |
+
|
4 |
+
void matmul_persistent_cuda(
|
5 |
+
torch::Tensor const &a,
|
6 |
+
torch::Tensor const &b,
|
7 |
+
torch::Tensor &c,
|
8 |
+
torch::Tensor const &bias);
|
9 |
+
|
10 |
+
void log_softmax_cuda(
|
11 |
+
torch::Tensor const &input,
|
12 |
+
torch::Tensor &output);
|
13 |
+
|
14 |
+
void mean_dim_cuda(
|
15 |
+
torch::Tensor const &input,
|
16 |
+
torch::Tensor &output,
|
17 |
+
int dim);
|