Upload folder using huggingface_hub
Browse files- flake.lock +168 -0
- torch-ext/batch_invariant/__init__.py +168 -0
flake.lock
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"nodes": {
|
| 3 |
+
"flake-compat": {
|
| 4 |
+
"locked": {
|
| 5 |
+
"lastModified": 1747046372,
|
| 6 |
+
"narHash": "sha256-CIVLLkVgvHYbgI2UpXvIIBJ12HWgX+fjA8Xf8PUmqCY=",
|
| 7 |
+
"owner": "edolstra",
|
| 8 |
+
"repo": "flake-compat",
|
| 9 |
+
"rev": "9100a0f413b0c601e0533d1d94ffd501ce2e7885",
|
| 10 |
+
"type": "github"
|
| 11 |
+
},
|
| 12 |
+
"original": {
|
| 13 |
+
"owner": "edolstra",
|
| 14 |
+
"repo": "flake-compat",
|
| 15 |
+
"type": "github"
|
| 16 |
+
}
|
| 17 |
+
},
|
| 18 |
+
"flake-compat_2": {
|
| 19 |
+
"locked": {
|
| 20 |
+
"lastModified": 1747046372,
|
| 21 |
+
"narHash": "sha256-CIVLLkVgvHYbgI2UpXvIIBJ12HWgX+fjA8Xf8PUmqCY=",
|
| 22 |
+
"owner": "edolstra",
|
| 23 |
+
"repo": "flake-compat",
|
| 24 |
+
"rev": "9100a0f413b0c601e0533d1d94ffd501ce2e7885",
|
| 25 |
+
"type": "github"
|
| 26 |
+
},
|
| 27 |
+
"original": {
|
| 28 |
+
"owner": "edolstra",
|
| 29 |
+
"repo": "flake-compat",
|
| 30 |
+
"type": "github"
|
| 31 |
+
}
|
| 32 |
+
},
|
| 33 |
+
"flake-utils": {
|
| 34 |
+
"inputs": {
|
| 35 |
+
"systems": "systems"
|
| 36 |
+
},
|
| 37 |
+
"locked": {
|
| 38 |
+
"lastModified": 1731533236,
|
| 39 |
+
"narHash": "sha256-l0KFg5HjrsfsO/JpG+r7fRrqm12kzFHyUHqHCVpMMbI=",
|
| 40 |
+
"owner": "numtide",
|
| 41 |
+
"repo": "flake-utils",
|
| 42 |
+
"rev": "11707dc2f618dd54ca8739b309ec4fc024de578b",
|
| 43 |
+
"type": "github"
|
| 44 |
+
},
|
| 45 |
+
"original": {
|
| 46 |
+
"owner": "numtide",
|
| 47 |
+
"repo": "flake-utils",
|
| 48 |
+
"type": "github"
|
| 49 |
+
}
|
| 50 |
+
},
|
| 51 |
+
"flake-utils_2": {
|
| 52 |
+
"inputs": {
|
| 53 |
+
"systems": "systems_2"
|
| 54 |
+
},
|
| 55 |
+
"locked": {
|
| 56 |
+
"lastModified": 1731533236,
|
| 57 |
+
"narHash": "sha256-l0KFg5HjrsfsO/JpG+r7fRrqm12kzFHyUHqHCVpMMbI=",
|
| 58 |
+
"owner": "numtide",
|
| 59 |
+
"repo": "flake-utils",
|
| 60 |
+
"rev": "11707dc2f618dd54ca8739b309ec4fc024de578b",
|
| 61 |
+
"type": "github"
|
| 62 |
+
},
|
| 63 |
+
"original": {
|
| 64 |
+
"owner": "numtide",
|
| 65 |
+
"repo": "flake-utils",
|
| 66 |
+
"type": "github"
|
| 67 |
+
}
|
| 68 |
+
},
|
| 69 |
+
"hf-nix": {
|
| 70 |
+
"inputs": {
|
| 71 |
+
"flake-compat": "flake-compat_2",
|
| 72 |
+
"flake-utils": "flake-utils_2",
|
| 73 |
+
"nixpkgs": "nixpkgs"
|
| 74 |
+
},
|
| 75 |
+
"locked": {
|
| 76 |
+
"lastModified": 1756316789,
|
| 77 |
+
"narHash": "sha256-DJvw0l+PXeFq963L3sbqAQKjIwGPae+yWpZHraFES28=",
|
| 78 |
+
"owner": "huggingface",
|
| 79 |
+
"repo": "hf-nix",
|
| 80 |
+
"rev": "57ea72ac74c89331005c47bb082b28cef653bed8",
|
| 81 |
+
"type": "github"
|
| 82 |
+
},
|
| 83 |
+
"original": {
|
| 84 |
+
"owner": "huggingface",
|
| 85 |
+
"repo": "hf-nix",
|
| 86 |
+
"type": "github"
|
| 87 |
+
}
|
| 88 |
+
},
|
| 89 |
+
"kernel-builder": {
|
| 90 |
+
"inputs": {
|
| 91 |
+
"flake-compat": "flake-compat",
|
| 92 |
+
"flake-utils": "flake-utils",
|
| 93 |
+
"hf-nix": "hf-nix",
|
| 94 |
+
"nixpkgs": [
|
| 95 |
+
"kernel-builder",
|
| 96 |
+
"hf-nix",
|
| 97 |
+
"nixpkgs"
|
| 98 |
+
]
|
| 99 |
+
},
|
| 100 |
+
"locked": {
|
| 101 |
+
"lastModified": 1757060761,
|
| 102 |
+
"narHash": "sha256-aKGP9jgV6N8aRF7jR3OnYSBmOa6C6u4ULRpvcThgFck=",
|
| 103 |
+
"owner": "huggingface",
|
| 104 |
+
"repo": "kernel-builder",
|
| 105 |
+
"rev": "08fcbf386981dc0fb7e47679d3ba86d77a33721b",
|
| 106 |
+
"type": "github"
|
| 107 |
+
},
|
| 108 |
+
"original": {
|
| 109 |
+
"owner": "huggingface",
|
| 110 |
+
"repo": "kernel-builder",
|
| 111 |
+
"type": "github"
|
| 112 |
+
}
|
| 113 |
+
},
|
| 114 |
+
"nixpkgs": {
|
| 115 |
+
"locked": {
|
| 116 |
+
"lastModified": 1755963616,
|
| 117 |
+
"narHash": "sha256-6yD0ww/S8n+U2uPYcJZ3DRURP8Kx036GRpR2uPNZroE=",
|
| 118 |
+
"owner": "nixos",
|
| 119 |
+
"repo": "nixpkgs",
|
| 120 |
+
"rev": "73e96df7cff5783f45e21342a75a1540c4eddce4",
|
| 121 |
+
"type": "github"
|
| 122 |
+
},
|
| 123 |
+
"original": {
|
| 124 |
+
"owner": "nixos",
|
| 125 |
+
"ref": "nixos-unstable-small",
|
| 126 |
+
"repo": "nixpkgs",
|
| 127 |
+
"type": "github"
|
| 128 |
+
}
|
| 129 |
+
},
|
| 130 |
+
"root": {
|
| 131 |
+
"inputs": {
|
| 132 |
+
"kernel-builder": "kernel-builder"
|
| 133 |
+
}
|
| 134 |
+
},
|
| 135 |
+
"systems": {
|
| 136 |
+
"locked": {
|
| 137 |
+
"lastModified": 1681028828,
|
| 138 |
+
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
|
| 139 |
+
"owner": "nix-systems",
|
| 140 |
+
"repo": "default",
|
| 141 |
+
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
|
| 142 |
+
"type": "github"
|
| 143 |
+
},
|
| 144 |
+
"original": {
|
| 145 |
+
"owner": "nix-systems",
|
| 146 |
+
"repo": "default",
|
| 147 |
+
"type": "github"
|
| 148 |
+
}
|
| 149 |
+
},
|
| 150 |
+
"systems_2": {
|
| 151 |
+
"locked": {
|
| 152 |
+
"lastModified": 1681028828,
|
| 153 |
+
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
|
| 154 |
+
"owner": "nix-systems",
|
| 155 |
+
"repo": "default",
|
| 156 |
+
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
|
| 157 |
+
"type": "github"
|
| 158 |
+
},
|
| 159 |
+
"original": {
|
| 160 |
+
"owner": "nix-systems",
|
| 161 |
+
"repo": "default",
|
| 162 |
+
"type": "github"
|
| 163 |
+
}
|
| 164 |
+
}
|
| 165 |
+
},
|
| 166 |
+
"root": "root",
|
| 167 |
+
"version": 7
|
| 168 |
+
}
|
torch-ext/batch_invariant/__init__.py
CHANGED
|
@@ -1,4 +1,6 @@
|
|
| 1 |
import torch
|
|
|
|
|
|
|
| 2 |
from ._ops import ops
|
| 3 |
|
| 4 |
|
|
@@ -118,3 +120,169 @@ def mean_batch_invariant(input, dim, keepdim=False, dtype: torch.dtype = None):
|
|
| 118 |
for d in dim:
|
| 119 |
n_elems *= input.shape[d]
|
| 120 |
return torch.sum(input, dim=dim, keepdim=keepdim, dtype=torch.float32) / n_elems
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import math
|
| 4 |
from ._ops import ops
|
| 5 |
|
| 6 |
|
|
|
|
| 120 |
for d in dim:
|
| 121 |
n_elems *= input.shape[d]
|
| 122 |
return torch.sum(input, dim=dim, keepdim=keepdim, dtype=torch.float32) / n_elems
|
| 123 |
+
|
| 124 |
+
class BatchInvariantAttention(nn.Module):
|
| 125 |
+
"""
|
| 126 |
+
Batch invariant multi-head attention implementation.
|
| 127 |
+
Compatible with transformers library integration.
|
| 128 |
+
"""
|
| 129 |
+
|
| 130 |
+
def __init__(self, config):
|
| 131 |
+
super().__init__()
|
| 132 |
+
self.config = config
|
| 133 |
+
self.hidden_size = config.hidden_size
|
| 134 |
+
self.num_heads = config.num_attention_heads
|
| 135 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 136 |
+
self.max_position_embeddings = getattr(config, "max_position_embeddings", 2048)
|
| 137 |
+
|
| 138 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
| 139 |
+
raise ValueError(
|
| 140 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
| 141 |
+
f" and `num_heads`: {self.num_heads})."
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
# Linear projections
|
| 145 |
+
self.q_proj = nn.Linear(
|
| 146 |
+
self.hidden_size, self.num_heads * self.head_dim, bias=False
|
| 147 |
+
)
|
| 148 |
+
self.k_proj = nn.Linear(
|
| 149 |
+
self.hidden_size, self.num_heads * self.head_dim, bias=False
|
| 150 |
+
)
|
| 151 |
+
self.v_proj = nn.Linear(
|
| 152 |
+
self.hidden_size, self.num_heads * self.head_dim, bias=False
|
| 153 |
+
)
|
| 154 |
+
self.o_proj = nn.Linear(
|
| 155 |
+
self.num_heads * self.head_dim, self.hidden_size, bias=False
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
def forward(
|
| 159 |
+
self,
|
| 160 |
+
hidden_states: torch.Tensor,
|
| 161 |
+
attention_mask: torch.Tensor = None,
|
| 162 |
+
position_ids: torch.Tensor = None,
|
| 163 |
+
past_key_value=None,
|
| 164 |
+
output_attentions: bool = False,
|
| 165 |
+
use_cache: bool = False,
|
| 166 |
+
cache_position: torch.Tensor = None,
|
| 167 |
+
**kwargs,
|
| 168 |
+
):
|
| 169 |
+
batch_size, seq_len, _ = hidden_states.size()
|
| 170 |
+
|
| 171 |
+
# Project to Q, K, V using batch invariant matrix multiplication
|
| 172 |
+
query_states = self._batch_invariant_linear(hidden_states, self.q_proj.weight)
|
| 173 |
+
key_states = self._batch_invariant_linear(hidden_states, self.k_proj.weight)
|
| 174 |
+
value_states = self._batch_invariant_linear(hidden_states, self.v_proj.weight)
|
| 175 |
+
|
| 176 |
+
# Reshape for multi-head attention
|
| 177 |
+
query_states = query_states.view(
|
| 178 |
+
batch_size, seq_len, self.num_heads, self.head_dim
|
| 179 |
+
).transpose(1, 2)
|
| 180 |
+
key_states = key_states.view(
|
| 181 |
+
batch_size, seq_len, self.num_heads, self.head_dim
|
| 182 |
+
).transpose(1, 2)
|
| 183 |
+
value_states = value_states.view(
|
| 184 |
+
batch_size, seq_len, self.num_heads, self.head_dim
|
| 185 |
+
).transpose(1, 2)
|
| 186 |
+
|
| 187 |
+
# Compute attention scores
|
| 188 |
+
attn_weights = torch.matmul(
|
| 189 |
+
query_states, key_states.transpose(2, 3)
|
| 190 |
+
) / math.sqrt(self.head_dim)
|
| 191 |
+
|
| 192 |
+
# Apply attention mask if provided
|
| 193 |
+
if attention_mask is not None:
|
| 194 |
+
attn_weights = attn_weights + attention_mask
|
| 195 |
+
|
| 196 |
+
# Apply softmax using batch invariant log_softmax
|
| 197 |
+
attn_weights_log = log_softmax(attn_weights, dim=-1)
|
| 198 |
+
attn_weights = torch.exp(attn_weights_log)
|
| 199 |
+
|
| 200 |
+
# Apply attention to values
|
| 201 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 202 |
+
|
| 203 |
+
# Reshape and apply output projection
|
| 204 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 205 |
+
attn_output = attn_output.reshape(batch_size, seq_len, self.hidden_size)
|
| 206 |
+
attn_output = self._batch_invariant_linear(attn_output, self.o_proj.weight)
|
| 207 |
+
|
| 208 |
+
outputs = (attn_output,)
|
| 209 |
+
if output_attentions:
|
| 210 |
+
outputs += (attn_weights,)
|
| 211 |
+
if use_cache:
|
| 212 |
+
outputs += (past_key_value,)
|
| 213 |
+
|
| 214 |
+
return outputs
|
| 215 |
+
|
| 216 |
+
def _batch_invariant_linear(
|
| 217 |
+
self, input_tensor: torch.Tensor, weight: torch.Tensor
|
| 218 |
+
) -> torch.Tensor:
|
| 219 |
+
"""Apply linear transformation using batch invariant matrix multiplication"""
|
| 220 |
+
original_shape = input_tensor.shape
|
| 221 |
+
input_2d = input_tensor.view(-1, original_shape[-1])
|
| 222 |
+
output_2d = matmul_persistent(input_2d, weight.t())
|
| 223 |
+
return output_2d.view(*original_shape[:-1], -1)
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
class BatchInvariantMLP(nn.Module):
|
| 227 |
+
"""
|
| 228 |
+
Batch invariant MLP implementation.
|
| 229 |
+
"""
|
| 230 |
+
|
| 231 |
+
def __init__(self, config):
|
| 232 |
+
super().__init__()
|
| 233 |
+
self.config = config
|
| 234 |
+
self.hidden_size = config.hidden_size
|
| 235 |
+
self.intermediate_size = config.intermediate_size
|
| 236 |
+
|
| 237 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 238 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 239 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 240 |
+
self.act_fn = (
|
| 241 |
+
nn.SiLU()
|
| 242 |
+
) # or whatever activation function is specified in config
|
| 243 |
+
|
| 244 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 245 |
+
# Use batch invariant matrix multiplication for projections
|
| 246 |
+
gate = self._batch_invariant_linear(x, self.gate_proj.weight)
|
| 247 |
+
up = self._batch_invariant_linear(x, self.up_proj.weight)
|
| 248 |
+
|
| 249 |
+
# Apply activation
|
| 250 |
+
intermediate = self.act_fn(gate) * up
|
| 251 |
+
|
| 252 |
+
# Down projection
|
| 253 |
+
output = self._batch_invariant_linear(intermediate, self.down_proj.weight)
|
| 254 |
+
return output
|
| 255 |
+
|
| 256 |
+
def _batch_invariant_linear(
|
| 257 |
+
self, input_tensor: torch.Tensor, weight: torch.Tensor
|
| 258 |
+
) -> torch.Tensor:
|
| 259 |
+
"""Apply linear transformation using batch invariant matrix multiplication"""
|
| 260 |
+
original_shape = input_tensor.shape
|
| 261 |
+
input_2d = input_tensor.view(-1, original_shape[-1])
|
| 262 |
+
output_2d = matmul_persistent(input_2d, weight.t())
|
| 263 |
+
return output_2d.view(*original_shape[:-1], -1)
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
class BatchInvariantRMSNorm(nn.Module):
|
| 267 |
+
"""
|
| 268 |
+
Batch invariant RMS normalization implementation.
|
| 269 |
+
"""
|
| 270 |
+
|
| 271 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 272 |
+
super().__init__()
|
| 273 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 274 |
+
self.variance_epsilon = eps
|
| 275 |
+
|
| 276 |
+
def forward(self, hidden_states):
|
| 277 |
+
input_dtype = hidden_states.dtype
|
| 278 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 279 |
+
|
| 280 |
+
# Compute mean square using batch invariant mean
|
| 281 |
+
variance = mean_dim(hidden_states.pow(2), dim=-1, keepdim=True)
|
| 282 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 283 |
+
|
| 284 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
# Export the layer classes
|
| 288 |
+
__all__ += ["BatchInvariantAttention", "BatchInvariantMLP", "BatchInvariantRMSNorm"]
|