Upload folder using huggingface_hub
Browse files- flake.lock +168 -0
- torch-ext/batch_invariant/__init__.py +168 -0
flake.lock
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nodes": {
|
3 |
+
"flake-compat": {
|
4 |
+
"locked": {
|
5 |
+
"lastModified": 1747046372,
|
6 |
+
"narHash": "sha256-CIVLLkVgvHYbgI2UpXvIIBJ12HWgX+fjA8Xf8PUmqCY=",
|
7 |
+
"owner": "edolstra",
|
8 |
+
"repo": "flake-compat",
|
9 |
+
"rev": "9100a0f413b0c601e0533d1d94ffd501ce2e7885",
|
10 |
+
"type": "github"
|
11 |
+
},
|
12 |
+
"original": {
|
13 |
+
"owner": "edolstra",
|
14 |
+
"repo": "flake-compat",
|
15 |
+
"type": "github"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"flake-compat_2": {
|
19 |
+
"locked": {
|
20 |
+
"lastModified": 1747046372,
|
21 |
+
"narHash": "sha256-CIVLLkVgvHYbgI2UpXvIIBJ12HWgX+fjA8Xf8PUmqCY=",
|
22 |
+
"owner": "edolstra",
|
23 |
+
"repo": "flake-compat",
|
24 |
+
"rev": "9100a0f413b0c601e0533d1d94ffd501ce2e7885",
|
25 |
+
"type": "github"
|
26 |
+
},
|
27 |
+
"original": {
|
28 |
+
"owner": "edolstra",
|
29 |
+
"repo": "flake-compat",
|
30 |
+
"type": "github"
|
31 |
+
}
|
32 |
+
},
|
33 |
+
"flake-utils": {
|
34 |
+
"inputs": {
|
35 |
+
"systems": "systems"
|
36 |
+
},
|
37 |
+
"locked": {
|
38 |
+
"lastModified": 1731533236,
|
39 |
+
"narHash": "sha256-l0KFg5HjrsfsO/JpG+r7fRrqm12kzFHyUHqHCVpMMbI=",
|
40 |
+
"owner": "numtide",
|
41 |
+
"repo": "flake-utils",
|
42 |
+
"rev": "11707dc2f618dd54ca8739b309ec4fc024de578b",
|
43 |
+
"type": "github"
|
44 |
+
},
|
45 |
+
"original": {
|
46 |
+
"owner": "numtide",
|
47 |
+
"repo": "flake-utils",
|
48 |
+
"type": "github"
|
49 |
+
}
|
50 |
+
},
|
51 |
+
"flake-utils_2": {
|
52 |
+
"inputs": {
|
53 |
+
"systems": "systems_2"
|
54 |
+
},
|
55 |
+
"locked": {
|
56 |
+
"lastModified": 1731533236,
|
57 |
+
"narHash": "sha256-l0KFg5HjrsfsO/JpG+r7fRrqm12kzFHyUHqHCVpMMbI=",
|
58 |
+
"owner": "numtide",
|
59 |
+
"repo": "flake-utils",
|
60 |
+
"rev": "11707dc2f618dd54ca8739b309ec4fc024de578b",
|
61 |
+
"type": "github"
|
62 |
+
},
|
63 |
+
"original": {
|
64 |
+
"owner": "numtide",
|
65 |
+
"repo": "flake-utils",
|
66 |
+
"type": "github"
|
67 |
+
}
|
68 |
+
},
|
69 |
+
"hf-nix": {
|
70 |
+
"inputs": {
|
71 |
+
"flake-compat": "flake-compat_2",
|
72 |
+
"flake-utils": "flake-utils_2",
|
73 |
+
"nixpkgs": "nixpkgs"
|
74 |
+
},
|
75 |
+
"locked": {
|
76 |
+
"lastModified": 1756316789,
|
77 |
+
"narHash": "sha256-DJvw0l+PXeFq963L3sbqAQKjIwGPae+yWpZHraFES28=",
|
78 |
+
"owner": "huggingface",
|
79 |
+
"repo": "hf-nix",
|
80 |
+
"rev": "57ea72ac74c89331005c47bb082b28cef653bed8",
|
81 |
+
"type": "github"
|
82 |
+
},
|
83 |
+
"original": {
|
84 |
+
"owner": "huggingface",
|
85 |
+
"repo": "hf-nix",
|
86 |
+
"type": "github"
|
87 |
+
}
|
88 |
+
},
|
89 |
+
"kernel-builder": {
|
90 |
+
"inputs": {
|
91 |
+
"flake-compat": "flake-compat",
|
92 |
+
"flake-utils": "flake-utils",
|
93 |
+
"hf-nix": "hf-nix",
|
94 |
+
"nixpkgs": [
|
95 |
+
"kernel-builder",
|
96 |
+
"hf-nix",
|
97 |
+
"nixpkgs"
|
98 |
+
]
|
99 |
+
},
|
100 |
+
"locked": {
|
101 |
+
"lastModified": 1757060761,
|
102 |
+
"narHash": "sha256-aKGP9jgV6N8aRF7jR3OnYSBmOa6C6u4ULRpvcThgFck=",
|
103 |
+
"owner": "huggingface",
|
104 |
+
"repo": "kernel-builder",
|
105 |
+
"rev": "08fcbf386981dc0fb7e47679d3ba86d77a33721b",
|
106 |
+
"type": "github"
|
107 |
+
},
|
108 |
+
"original": {
|
109 |
+
"owner": "huggingface",
|
110 |
+
"repo": "kernel-builder",
|
111 |
+
"type": "github"
|
112 |
+
}
|
113 |
+
},
|
114 |
+
"nixpkgs": {
|
115 |
+
"locked": {
|
116 |
+
"lastModified": 1755963616,
|
117 |
+
"narHash": "sha256-6yD0ww/S8n+U2uPYcJZ3DRURP8Kx036GRpR2uPNZroE=",
|
118 |
+
"owner": "nixos",
|
119 |
+
"repo": "nixpkgs",
|
120 |
+
"rev": "73e96df7cff5783f45e21342a75a1540c4eddce4",
|
121 |
+
"type": "github"
|
122 |
+
},
|
123 |
+
"original": {
|
124 |
+
"owner": "nixos",
|
125 |
+
"ref": "nixos-unstable-small",
|
126 |
+
"repo": "nixpkgs",
|
127 |
+
"type": "github"
|
128 |
+
}
|
129 |
+
},
|
130 |
+
"root": {
|
131 |
+
"inputs": {
|
132 |
+
"kernel-builder": "kernel-builder"
|
133 |
+
}
|
134 |
+
},
|
135 |
+
"systems": {
|
136 |
+
"locked": {
|
137 |
+
"lastModified": 1681028828,
|
138 |
+
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
|
139 |
+
"owner": "nix-systems",
|
140 |
+
"repo": "default",
|
141 |
+
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
|
142 |
+
"type": "github"
|
143 |
+
},
|
144 |
+
"original": {
|
145 |
+
"owner": "nix-systems",
|
146 |
+
"repo": "default",
|
147 |
+
"type": "github"
|
148 |
+
}
|
149 |
+
},
|
150 |
+
"systems_2": {
|
151 |
+
"locked": {
|
152 |
+
"lastModified": 1681028828,
|
153 |
+
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
|
154 |
+
"owner": "nix-systems",
|
155 |
+
"repo": "default",
|
156 |
+
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
|
157 |
+
"type": "github"
|
158 |
+
},
|
159 |
+
"original": {
|
160 |
+
"owner": "nix-systems",
|
161 |
+
"repo": "default",
|
162 |
+
"type": "github"
|
163 |
+
}
|
164 |
+
}
|
165 |
+
},
|
166 |
+
"root": "root",
|
167 |
+
"version": 7
|
168 |
+
}
|
torch-ext/batch_invariant/__init__.py
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
import torch
|
|
|
|
|
2 |
from ._ops import ops
|
3 |
|
4 |
|
@@ -118,3 +120,169 @@ def mean_batch_invariant(input, dim, keepdim=False, dtype: torch.dtype = None):
|
|
118 |
for d in dim:
|
119 |
n_elems *= input.shape[d]
|
120 |
return torch.sum(input, dim=dim, keepdim=keepdim, dtype=torch.float32) / n_elems
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import math
|
4 |
from ._ops import ops
|
5 |
|
6 |
|
|
|
120 |
for d in dim:
|
121 |
n_elems *= input.shape[d]
|
122 |
return torch.sum(input, dim=dim, keepdim=keepdim, dtype=torch.float32) / n_elems
|
123 |
+
|
124 |
+
class BatchInvariantAttention(nn.Module):
|
125 |
+
"""
|
126 |
+
Batch invariant multi-head attention implementation.
|
127 |
+
Compatible with transformers library integration.
|
128 |
+
"""
|
129 |
+
|
130 |
+
def __init__(self, config):
|
131 |
+
super().__init__()
|
132 |
+
self.config = config
|
133 |
+
self.hidden_size = config.hidden_size
|
134 |
+
self.num_heads = config.num_attention_heads
|
135 |
+
self.head_dim = self.hidden_size // self.num_heads
|
136 |
+
self.max_position_embeddings = getattr(config, "max_position_embeddings", 2048)
|
137 |
+
|
138 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
139 |
+
raise ValueError(
|
140 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
141 |
+
f" and `num_heads`: {self.num_heads})."
|
142 |
+
)
|
143 |
+
|
144 |
+
# Linear projections
|
145 |
+
self.q_proj = nn.Linear(
|
146 |
+
self.hidden_size, self.num_heads * self.head_dim, bias=False
|
147 |
+
)
|
148 |
+
self.k_proj = nn.Linear(
|
149 |
+
self.hidden_size, self.num_heads * self.head_dim, bias=False
|
150 |
+
)
|
151 |
+
self.v_proj = nn.Linear(
|
152 |
+
self.hidden_size, self.num_heads * self.head_dim, bias=False
|
153 |
+
)
|
154 |
+
self.o_proj = nn.Linear(
|
155 |
+
self.num_heads * self.head_dim, self.hidden_size, bias=False
|
156 |
+
)
|
157 |
+
|
158 |
+
def forward(
|
159 |
+
self,
|
160 |
+
hidden_states: torch.Tensor,
|
161 |
+
attention_mask: torch.Tensor = None,
|
162 |
+
position_ids: torch.Tensor = None,
|
163 |
+
past_key_value=None,
|
164 |
+
output_attentions: bool = False,
|
165 |
+
use_cache: bool = False,
|
166 |
+
cache_position: torch.Tensor = None,
|
167 |
+
**kwargs,
|
168 |
+
):
|
169 |
+
batch_size, seq_len, _ = hidden_states.size()
|
170 |
+
|
171 |
+
# Project to Q, K, V using batch invariant matrix multiplication
|
172 |
+
query_states = self._batch_invariant_linear(hidden_states, self.q_proj.weight)
|
173 |
+
key_states = self._batch_invariant_linear(hidden_states, self.k_proj.weight)
|
174 |
+
value_states = self._batch_invariant_linear(hidden_states, self.v_proj.weight)
|
175 |
+
|
176 |
+
# Reshape for multi-head attention
|
177 |
+
query_states = query_states.view(
|
178 |
+
batch_size, seq_len, self.num_heads, self.head_dim
|
179 |
+
).transpose(1, 2)
|
180 |
+
key_states = key_states.view(
|
181 |
+
batch_size, seq_len, self.num_heads, self.head_dim
|
182 |
+
).transpose(1, 2)
|
183 |
+
value_states = value_states.view(
|
184 |
+
batch_size, seq_len, self.num_heads, self.head_dim
|
185 |
+
).transpose(1, 2)
|
186 |
+
|
187 |
+
# Compute attention scores
|
188 |
+
attn_weights = torch.matmul(
|
189 |
+
query_states, key_states.transpose(2, 3)
|
190 |
+
) / math.sqrt(self.head_dim)
|
191 |
+
|
192 |
+
# Apply attention mask if provided
|
193 |
+
if attention_mask is not None:
|
194 |
+
attn_weights = attn_weights + attention_mask
|
195 |
+
|
196 |
+
# Apply softmax using batch invariant log_softmax
|
197 |
+
attn_weights_log = log_softmax(attn_weights, dim=-1)
|
198 |
+
attn_weights = torch.exp(attn_weights_log)
|
199 |
+
|
200 |
+
# Apply attention to values
|
201 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
202 |
+
|
203 |
+
# Reshape and apply output projection
|
204 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
205 |
+
attn_output = attn_output.reshape(batch_size, seq_len, self.hidden_size)
|
206 |
+
attn_output = self._batch_invariant_linear(attn_output, self.o_proj.weight)
|
207 |
+
|
208 |
+
outputs = (attn_output,)
|
209 |
+
if output_attentions:
|
210 |
+
outputs += (attn_weights,)
|
211 |
+
if use_cache:
|
212 |
+
outputs += (past_key_value,)
|
213 |
+
|
214 |
+
return outputs
|
215 |
+
|
216 |
+
def _batch_invariant_linear(
|
217 |
+
self, input_tensor: torch.Tensor, weight: torch.Tensor
|
218 |
+
) -> torch.Tensor:
|
219 |
+
"""Apply linear transformation using batch invariant matrix multiplication"""
|
220 |
+
original_shape = input_tensor.shape
|
221 |
+
input_2d = input_tensor.view(-1, original_shape[-1])
|
222 |
+
output_2d = matmul_persistent(input_2d, weight.t())
|
223 |
+
return output_2d.view(*original_shape[:-1], -1)
|
224 |
+
|
225 |
+
|
226 |
+
class BatchInvariantMLP(nn.Module):
|
227 |
+
"""
|
228 |
+
Batch invariant MLP implementation.
|
229 |
+
"""
|
230 |
+
|
231 |
+
def __init__(self, config):
|
232 |
+
super().__init__()
|
233 |
+
self.config = config
|
234 |
+
self.hidden_size = config.hidden_size
|
235 |
+
self.intermediate_size = config.intermediate_size
|
236 |
+
|
237 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
238 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
239 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
240 |
+
self.act_fn = (
|
241 |
+
nn.SiLU()
|
242 |
+
) # or whatever activation function is specified in config
|
243 |
+
|
244 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
245 |
+
# Use batch invariant matrix multiplication for projections
|
246 |
+
gate = self._batch_invariant_linear(x, self.gate_proj.weight)
|
247 |
+
up = self._batch_invariant_linear(x, self.up_proj.weight)
|
248 |
+
|
249 |
+
# Apply activation
|
250 |
+
intermediate = self.act_fn(gate) * up
|
251 |
+
|
252 |
+
# Down projection
|
253 |
+
output = self._batch_invariant_linear(intermediate, self.down_proj.weight)
|
254 |
+
return output
|
255 |
+
|
256 |
+
def _batch_invariant_linear(
|
257 |
+
self, input_tensor: torch.Tensor, weight: torch.Tensor
|
258 |
+
) -> torch.Tensor:
|
259 |
+
"""Apply linear transformation using batch invariant matrix multiplication"""
|
260 |
+
original_shape = input_tensor.shape
|
261 |
+
input_2d = input_tensor.view(-1, original_shape[-1])
|
262 |
+
output_2d = matmul_persistent(input_2d, weight.t())
|
263 |
+
return output_2d.view(*original_shape[:-1], -1)
|
264 |
+
|
265 |
+
|
266 |
+
class BatchInvariantRMSNorm(nn.Module):
|
267 |
+
"""
|
268 |
+
Batch invariant RMS normalization implementation.
|
269 |
+
"""
|
270 |
+
|
271 |
+
def __init__(self, hidden_size, eps=1e-6):
|
272 |
+
super().__init__()
|
273 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
274 |
+
self.variance_epsilon = eps
|
275 |
+
|
276 |
+
def forward(self, hidden_states):
|
277 |
+
input_dtype = hidden_states.dtype
|
278 |
+
hidden_states = hidden_states.to(torch.float32)
|
279 |
+
|
280 |
+
# Compute mean square using batch invariant mean
|
281 |
+
variance = mean_dim(hidden_states.pow(2), dim=-1, keepdim=True)
|
282 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
283 |
+
|
284 |
+
return self.weight * hidden_states.to(input_dtype)
|
285 |
+
|
286 |
+
|
287 |
+
# Export the layer classes
|
288 |
+
__all__ += ["BatchInvariantAttention", "BatchInvariantMLP", "BatchInvariantRMSNorm"]
|