--- library_name: transformers license: mit datasets: - google-research-datasets/go_emotions base_model: answerdotai/ModernBERT-large language: - en tags: - Text Classification - emotion-classification - emotion-recognition - emotion-detection - emotion - multilabel metrics: - f1 - precision - recall --- # Summary This is [ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) model finetuned on [go_emotions](https://huggingface.co/datasets/google-research-datasets/go_emotions) dataset for multilabel classification. Model can be used to extract all emotions from english text or detect certain emotions. Thresholds are selected on validation set by maximizing f1 macro over all labels. You can use Flash Attention 2 to speed up inference. The quality of the model varies greatly across all classes (look at the table with metrics below). There are classes like admiration, amusement, optimism, fear, remorse and others where the model shows high recognition quality, and classes that pose difficulties for the model - disappointment, realization that do have much fewer examples in the training data. # Usage Using model is easy with Huggingface Transformers. ModernBERT architecture is supported in the transformers version 4.48.0 and later, so you need to install it: ```bash pip install "transformers>=4.48.0" ``` Here is how you can extract emotions contained in text: ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained('fyaronskiy/ModernBERT-large-go-emotions') model = AutoModelForSequenceClassification.from_pretrained('fyaronskiy/ModernBERT-large-go-emotions') best_thresholds = [0.5510204081632653, 0.26530612244897955, 0.14285714285714285, 0.12244897959183673, 0.44897959183673464, 0.22448979591836732, 0.2040816326530612, 0.4081632653061224, 0.5306122448979591, 0.22448979591836732, 0.2857142857142857, 0.3061224489795918, 0.2040816326530612, 0.14285714285714285, 0.1020408163265306, 0.4693877551020408, 0.24489795918367346, 0.3061224489795918, 0.2040816326530612, 0.36734693877551017, 0.2857142857142857, 0.04081632653061224, 0.3061224489795918, 0.16326530612244897, 0.26530612244897955, 0.32653061224489793, 0.12244897959183673, 0.2040816326530612] LABELS = ['admiration', 'amusement', 'anger', 'annoyance', 'approval', 'caring', 'confusion', 'curiosity', 'desire', 'disappointment', 'disapproval', 'disgust', 'embarrassment', 'excitement', 'fear', 'gratitude', 'grief', 'joy', 'love', 'nervousness', 'optimism', 'pride', 'realization', 'relief', 'remorse', 'sadness', 'surprise', 'neutral'] ID2LABEL = dict(enumerate(LABELS)) ``` ```python def detect_emotions(text): inputs = tokenizer(text, truncation=True, add_special_tokens=True, max_length=128, return_tensors='pt') with torch.no_grad(): logits = model(**inputs).logits probas = torch.sigmoid(logits).squeeze(dim=0) class_binary_labels = (probas > torch.tensor(best_thresholds)).int() return [ID2LABEL[label_id] for label_id, value in enumerate(class_binary_labels) if value == 1] print(detect_emotions('You have excellent service and the best coffee in the city, I love your coffee shop!')) #['admiration', 'love'] ``` This is the way to get all emotions and their scores: ```python def predict(text): inputs = tokenizer(text, truncation=True, add_special_tokens=True, max_length=128, return_tensors='pt') with torch.no_grad(): logits = model(**inputs).logits probas = torch.sigmoid(logits).squeeze(dim=0).tolist() probas = [round(proba, 3) for proba in probas] labels2probas = dict(zip(LABELS, probas)) probas_dict_sorted = dict(sorted(labels2probas.items(), key=lambda x: x[1], reverse=True)) return probas_dict_sorted print(predict('You have excellent service and the best coffee in the city, I love your coffee shop!')) #{'admiration': 0.982, 'love': 0.689, 'approval': 0.014, 'gratitude': 0.003, 'joy': 0.003, 'amusement': 0.001, 'curiosity': 0.001, 'excitement': 0.001, 'realization': 0.001, 'surprise': 0.001, 'anger': 0.0, 'annoyance': 0.0, 'caring': 0.0, 'confusion': 0.0, 'desire': 0.0, 'disappointment': 0.0, 'disapproval': 0.0, 'disgust': 0.0, 'embarrassment': 0.0, 'fear': 0.0, 'grief': 0.0, 'nervousness': 0.0, 'optimism': 0.0, 'pride': 0.0, 'relief': 0.0, 'remorse': 0.0, 'sadness': 0.0, 'neutral': 0.0} ``` # Eval results on test split of go-emotions | | precision | recall | f1-score | support | threshold | |:---------------|------------:|---------:|-----------:|----------:|------------:| | admiration | 0.68 | 0.72 | 0.7 | 504 | 0.55 | | amusement | 0.76 | 0.91 | 0.83 | 264 | 0.27 | | anger | 0.44 | 0.53 | 0.48 | 198 | 0.14 | | annoyance | 0.27 | 0.46 | 0.34 | 320 | 0.12 | | approval | 0.41 | 0.38 | 0.4 | 351 | 0.45 | | caring | 0.37 | 0.46 | 0.41 | 135 | 0.22 | | confusion | 0.36 | 0.51 | 0.42 | 153 | 0.2 | | curiosity | 0.45 | 0.77 | 0.57 | 284 | 0.41 | | desire | 0.66 | 0.46 | 0.54 | 83 | 0.53 | | disappointment | 0.41 | 0.26 | 0.32 | 151 | 0.22 | | disapproval | 0.39 | 0.54 | 0.45 | 267 | 0.29 | | disgust | 0.52 | 0.41 | 0.46 | 123 | 0.31 | | embarrassment | 0.52 | 0.41 | 0.45 | 37 | 0.2 | | excitement | 0.29 | 0.59 | 0.39 | 103 | 0.14 | | fear | 0.55 | 0.78 | 0.65 | 78 | 0.1 | | gratitude | 0.96 | 0.88 | 0.92 | 352 | 0.47 | | grief | 0.29 | 0.67 | 0.4 | 6 | 0.24 | | joy | 0.57 | 0.66 | 0.61 | 161 | 0.31 | | love | 0.74 | 0.87 | 0.8 | 238 | 0.2 | | nervousness | 0.37 | 0.43 | 0.4 | 23 | 0.37 | | optimism | 0.6 | 0.58 | 0.59 | 186 | 0.29 | | pride | 0.28 | 0.44 | 0.34 | 16 | 0.04 | | realization | 0.36 | 0.19 | 0.24 | 145 | 0.31 | | relief | 0.62 | 0.45 | 0.53 | 11 | 0.16 | | remorse | 0.51 | 0.84 | 0.63 | 56 | 0.27 | | sadness | 0.54 | 0.56 | 0.55 | 156 | 0.33 | | surprise | 0.47 | 0.63 | 0.54 | 141 | 0.12 | | neutral | 0.58 | 0.82 | 0.68 | 1787 | 0.2 | | micro avg | 0.54 | 0.67 | 0.6 | 6329 | | | macro avg | 0.5 | 0.58 | 0.52 | 6329 | | | weighted avg | 0.55 | 0.67 | 0.6 | 6329 | | | samples avg | 0.59 | 0.69 | 0.61 | 6329 | |