--- license: cc-by-4.0 base_model: NazaGara/NER-fine-tuned-BETO tags: - generated_from_trainer datasets: - conll2002 metrics: - precision - recall - f1 - accuracy model-index: - name: beto-finetuned-ner-cfv results: - task: name: Token Classification type: token-classification dataset: name: conll2002 type: conll2002 config: es split: validation args: es metrics: - name: Precision type: precision value: 0.8614471581830633 - name: Recall type: recall value: 0.8671875 - name: F1 type: f1 value: 0.8643077980075576 - name: Accuracy type: accuracy value: 0.9790072369291234 --- # beto-finetuned-ner-cfv This model is a fine-tuned version of [NazaGara/NER-fine-tuned-BETO](https://huggingface.co/NazaGara/NER-fine-tuned-BETO) on the conll2002 dataset. It achieves the following results on the evaluation set: - Loss: 0.1659 - Precision: 0.8614 - Recall: 0.8672 - F1: 0.8643 - Accuracy: 0.9790 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0272 | 1.0 | 1041 | 0.1062 | 0.8549 | 0.8637 | 0.8593 | 0.9786 | | 0.0208 | 2.0 | 2082 | 0.1127 | 0.8443 | 0.8596 | 0.8519 | 0.9782 | | 0.0158 | 3.0 | 3123 | 0.1195 | 0.8545 | 0.8598 | 0.8572 | 0.9787 | | 0.0129 | 4.0 | 4164 | 0.1332 | 0.8629 | 0.8589 | 0.8609 | 0.9782 | | 0.0107 | 5.0 | 5205 | 0.1299 | 0.8555 | 0.8635 | 0.8595 | 0.9786 | | 0.0087 | 6.0 | 6246 | 0.1486 | 0.8564 | 0.8564 | 0.8564 | 0.9782 | | 0.0085 | 7.0 | 7287 | 0.1583 | 0.8618 | 0.8596 | 0.8607 | 0.9783 | | 0.0066 | 8.0 | 8328 | 0.1582 | 0.8604 | 0.8580 | 0.8592 | 0.9783 | | 0.0052 | 9.0 | 9369 | 0.1571 | 0.8554 | 0.8566 | 0.8560 | 0.9781 | | 0.0054 | 10.0 | 10410 | 0.1604 | 0.8628 | 0.8640 | 0.8634 | 0.9787 | | 0.004 | 11.0 | 11451 | 0.1584 | 0.8624 | 0.8670 | 0.8647 | 0.9791 | | 0.0036 | 12.0 | 12492 | 0.1633 | 0.8603 | 0.8658 | 0.8630 | 0.9786 | | 0.0036 | 13.0 | 13533 | 0.1620 | 0.8628 | 0.8658 | 0.8643 | 0.9790 | | 0.0032 | 14.0 | 14574 | 0.1645 | 0.8617 | 0.8676 | 0.8647 | 0.9793 | | 0.0028 | 15.0 | 15615 | 0.1645 | 0.8604 | 0.8670 | 0.8637 | 0.9792 | | 0.003 | 16.0 | 16656 | 0.1659 | 0.8614 | 0.8672 | 0.8643 | 0.9790 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1