--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - conll2002 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner-cfv results: - task: name: Token Classification type: token-classification dataset: name: conll2002 type: conll2002 config: es split: validation args: es metrics: - name: Precision type: precision value: 0.807683615819209 - name: Recall type: recall value: 0.8212316176470589 - name: F1 type: f1 value: 0.8144012760624361 - name: Accuracy type: accuracy value: 0.974075543714453 --- # bert-finetuned-ner-cfv This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2002 dataset. It achieves the following results on the evaluation set: - Loss: 0.1851 - Precision: 0.8077 - Recall: 0.8212 - F1: 0.8144 - Accuracy: 0.9741 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 17 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 347 | 0.1278 | 0.7284 | 0.7475 | 0.7378 | 0.9646 | | 0.1176 | 2.0 | 694 | 0.1212 | 0.7509 | 0.7806 | 0.7654 | 0.9681 | | 0.0453 | 3.0 | 1041 | 0.1156 | 0.8062 | 0.8116 | 0.8089 | 0.9730 | | 0.0453 | 4.0 | 1388 | 0.1270 | 0.8081 | 0.8031 | 0.8056 | 0.9720 | | 0.0233 | 5.0 | 1735 | 0.1298 | 0.8145 | 0.8231 | 0.8187 | 0.9746 | | 0.0145 | 6.0 | 2082 | 0.1431 | 0.7950 | 0.8091 | 0.8020 | 0.9728 | | 0.0145 | 7.0 | 2429 | 0.1501 | 0.8103 | 0.8166 | 0.8135 | 0.9734 | | 0.009 | 8.0 | 2776 | 0.1553 | 0.8118 | 0.8157 | 0.8138 | 0.9738 | | 0.0061 | 9.0 | 3123 | 0.1572 | 0.7891 | 0.8084 | 0.7986 | 0.9720 | | 0.0061 | 10.0 | 3470 | 0.1589 | 0.8142 | 0.8196 | 0.8169 | 0.9739 | | 0.005 | 11.0 | 3817 | 0.1671 | 0.8092 | 0.8148 | 0.8120 | 0.9733 | | 0.0032 | 12.0 | 4164 | 0.1716 | 0.8066 | 0.8139 | 0.8102 | 0.9733 | | 0.0031 | 13.0 | 4511 | 0.1767 | 0.8025 | 0.8169 | 0.8096 | 0.9731 | | 0.0031 | 14.0 | 4858 | 0.1756 | 0.8096 | 0.8217 | 0.8156 | 0.9741 | | 0.0023 | 15.0 | 5205 | 0.1845 | 0.8109 | 0.8157 | 0.8133 | 0.9739 | | 0.0018 | 16.0 | 5552 | 0.1850 | 0.8090 | 0.8203 | 0.8146 | 0.9739 | | 0.0018 | 17.0 | 5899 | 0.1851 | 0.8077 | 0.8212 | 0.8144 | 0.9741 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1