Model save
Browse files
README.md
CHANGED
@@ -14,7 +14,7 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
|
15 |
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss:
|
18 |
|
19 |
## Model description
|
20 |
|
@@ -43,62 +43,61 @@ The following hyperparameters were used during training:
|
|
43 |
- lr_scheduler_type: linear
|
44 |
- lr_scheduler_warmup_steps: 40000
|
45 |
- training_steps: 100000
|
46 |
-
- mixed_precision_training: Native AMP
|
47 |
|
48 |
### Training results
|
49 |
|
50 |
| Training Loss | Epoch | Step | Validation Loss |
|
51 |
|:-------------:|:-------:|:------:|:---------------:|
|
52 |
-
| No log | 1.5021 | 2000 | 7.
|
53 |
-
|
|
54 |
-
|
|
55 |
-
|
|
56 |
-
|
|
57 |
-
|
|
58 |
-
|
|
59 |
-
|
|
60 |
-
|
|
61 |
-
|
|
62 |
-
|
|
63 |
-
|
|
64 |
-
|
|
65 |
-
|
|
66 |
-
|
|
67 |
-
|
|
68 |
-
|
|
69 |
-
|
|
70 |
-
|
|
71 |
-
| 3.
|
72 |
-
| 3.
|
73 |
-
| 3.
|
74 |
-
| 3.
|
75 |
-
| 3.
|
76 |
-
| 3.
|
77 |
-
|
|
78 |
-
|
|
79 |
-
|
|
80 |
-
|
|
81 |
-
|
|
82 |
-
|
|
83 |
-
|
|
84 |
-
|
|
85 |
-
|
|
86 |
-
|
|
87 |
-
| 2.
|
88 |
-
| 2.
|
89 |
-
| 2.
|
90 |
-
| 2.
|
91 |
-
| 2.
|
92 |
-
| 2.
|
93 |
-
| 2.
|
94 |
-
| 2.
|
95 |
-
| 2.
|
96 |
-
| 2.
|
97 |
-
| 2.
|
98 |
-
| 2.
|
99 |
-
| 2.
|
100 |
-
| 2.
|
101 |
-
| 2.
|
102 |
|
103 |
|
104 |
### Framework versions
|
|
|
14 |
|
15 |
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 2.6056
|
18 |
|
19 |
## Model description
|
20 |
|
|
|
43 |
- lr_scheduler_type: linear
|
44 |
- lr_scheduler_warmup_steps: 40000
|
45 |
- training_steps: 100000
|
|
|
46 |
|
47 |
### Training results
|
48 |
|
49 |
| Training Loss | Epoch | Step | Validation Loss |
|
50 |
|:-------------:|:-------:|:------:|:---------------:|
|
51 |
+
| No log | 1.5021 | 2000 | 7.4721 |
|
52 |
+
| 7.3851 | 3.0041 | 4000 | 6.4176 |
|
53 |
+
| 7.3851 | 4.5062 | 6000 | 6.3026 |
|
54 |
+
| 6.0706 | 6.0083 | 8000 | 6.2009 |
|
55 |
+
| 6.0706 | 7.5103 | 10000 | 6.1058 |
|
56 |
+
| 5.8733 | 9.0124 | 12000 | 6.0330 |
|
57 |
+
| 5.8733 | 10.5145 | 14000 | 5.9681 |
|
58 |
+
| 5.723 | 12.0165 | 16000 | 5.8789 |
|
59 |
+
| 5.723 | 13.5186 | 18000 | 5.8198 |
|
60 |
+
| 5.6127 | 15.0207 | 20000 | 5.8021 |
|
61 |
+
| 5.6127 | 16.5227 | 22000 | 5.7662 |
|
62 |
+
| 5.5325 | 18.0248 | 24000 | 5.7319 |
|
63 |
+
| 5.5325 | 19.5268 | 26000 | 5.7032 |
|
64 |
+
| 5.4632 | 21.0289 | 28000 | 5.7046 |
|
65 |
+
| 5.4632 | 22.5310 | 30000 | 5.5708 |
|
66 |
+
| 5.2633 | 24.0330 | 32000 | 4.9945 |
|
67 |
+
| 5.2633 | 25.5351 | 34000 | 4.5232 |
|
68 |
+
| 4.3386 | 27.0372 | 36000 | 4.1401 |
|
69 |
+
| 4.3386 | 28.5392 | 38000 | 3.8578 |
|
70 |
+
| 3.6823 | 30.0413 | 40000 | 3.6679 |
|
71 |
+
| 3.6823 | 31.5434 | 42000 | 3.5397 |
|
72 |
+
| 3.3424 | 33.0454 | 44000 | 3.4013 |
|
73 |
+
| 3.3424 | 34.5475 | 46000 | 3.3154 |
|
74 |
+
| 3.1266 | 36.0496 | 48000 | 3.2563 |
|
75 |
+
| 3.1266 | 37.5516 | 50000 | 3.1665 |
|
76 |
+
| 2.9693 | 39.0537 | 52000 | 3.1341 |
|
77 |
+
| 2.9693 | 40.5558 | 54000 | 3.0564 |
|
78 |
+
| 2.8544 | 42.0578 | 56000 | 3.0329 |
|
79 |
+
| 2.8544 | 43.5599 | 58000 | 2.9552 |
|
80 |
+
| 2.758 | 45.0620 | 60000 | 2.9492 |
|
81 |
+
| 2.758 | 46.5640 | 62000 | 2.8937 |
|
82 |
+
| 2.684 | 48.0661 | 64000 | 2.8662 |
|
83 |
+
| 2.684 | 49.5682 | 66000 | 2.8495 |
|
84 |
+
| 2.6223 | 51.0702 | 68000 | 2.8253 |
|
85 |
+
| 2.6223 | 52.5723 | 70000 | 2.7846 |
|
86 |
+
| 2.5704 | 54.0744 | 72000 | 2.7910 |
|
87 |
+
| 2.5704 | 55.5764 | 74000 | 2.7503 |
|
88 |
+
| 2.5235 | 57.0785 | 76000 | 2.7392 |
|
89 |
+
| 2.5235 | 58.5805 | 78000 | 2.7223 |
|
90 |
+
| 2.4865 | 60.0826 | 80000 | 2.7142 |
|
91 |
+
| 2.4865 | 61.5847 | 82000 | 2.7068 |
|
92 |
+
| 2.4549 | 63.0867 | 84000 | 2.7050 |
|
93 |
+
| 2.4549 | 64.5888 | 86000 | 2.6745 |
|
94 |
+
| 2.427 | 66.0909 | 88000 | 2.6638 |
|
95 |
+
| 2.427 | 67.5929 | 90000 | 2.6596 |
|
96 |
+
| 2.4092 | 69.0950 | 92000 | 2.6478 |
|
97 |
+
| 2.4092 | 70.5971 | 94000 | 2.6531 |
|
98 |
+
| 2.3873 | 72.0991 | 96000 | 2.6315 |
|
99 |
+
| 2.3873 | 73.6012 | 98000 | 2.6405 |
|
100 |
+
| 2.3734 | 75.1033 | 100000 | 2.6056 |
|
101 |
|
102 |
|
103 |
### Framework versions
|