---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:58749
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-large-en-v1.5
widget:
- source_sentence: abdul karim bin bakar
sentences:
- chong yang king
- karim bin bakar
- johan bin hamid
- source_sentence: ali bin hussin
sentences:
- pei ling sim
- rosmawati binti ahmad
- ali hussin
- source_sentence: thomas yong chee siu
sentences:
- xuan lian koay
- thomas chee siu yong
- thomas siu chee yong
- source_sentence: nik suraya binti nik hassan
sentences:
- noraini binti mansor
- soh peng gin
- nik suraya binti nik hassan
- source_sentence: nadia soh meng jun
sentences:
- brandon yi chia siu
- nadia jun soh meng
- meng soh jun
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on BAAI/bge-large-en-v1.5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5). It maps sentences & paragraphs to a 256-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 256 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 1024, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("foochun/bge-large-finetuned")
# Run inference
sentences = [
'nadia soh meng jun',
'nadia jun soh meng',
'meng soh jun',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 256]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 58,749 training samples
* Columns: query
, pos
, and neg
* Approximate statistics based on the first 1000 samples:
| | query | pos | neg |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string | string |
| details |
brandon loh wei ping
| wei ping loh
| ping wei loh brandon
|
| rahimah binti dollah
| rahimah binti dollah
| mariana binti saad
|
| siti syuhada binti mohd nazri
| syuhada binti mohd nazri
| siti syuhada binti abd rahman nazri
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 8,392 evaluation samples
* Columns: query
, pos
, and neg
* Approximate statistics based on the first 1000 samples:
| | query | pos | neg |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string | string |
| details | lam lyn li
| li lam lyn
| lmam lyn li
|
| sharifah aini binti syed jaafar
| sharifah aini syed jaafar
| mohd khairul bin abdullah
|
| foo mooi ying
| mooi ying foo
| foo mooi yng
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 1e-05
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.05
- `fp16`: True
- `load_best_model_at_end`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters