|
import os |
|
import numpy as np |
|
from typing import Dict, List, Any |
|
from PIL import Image, ImageDraw, ImageFont |
|
from transformers import LayoutLMv2Processor, LayoutLMv2ForTokenClassification |
|
from transformers import pipeline, AutoTokenizer |
|
|
|
os.system('apt-get install gcc -y') |
|
os.system('pip3 install pycocotools') |
|
os.system('pip3 install -q detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu113/torch1.10/index.html') |
|
|
|
import detectron2 |
|
|
|
print(f"DETECTRON2 {detectron2.__version__}") |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
|
|
|
|
self.processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased") |
|
self.model = LayoutLMv2ForTokenClassification.from_pretrained("nielsr/layoutlmv2-finetuned-funsd") |
|
self.id2label = { |
|
0: 'O', |
|
1: 'B-HEADER', |
|
2: 'I-HEADER', |
|
3: 'B-QUESTION', |
|
4: 'I-QUESTION', |
|
5: 'B-ANSWER', |
|
6: 'I-ANSWER' |
|
} |
|
|
|
|
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
""" |
|
Args: |
|
data (:obj:): |
|
includes the input data and the parameters for the inference. |
|
Return: |
|
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing : |
|
- "label": A string representing what the label/class is. There can be multiple labels. |
|
- "score": A score between 0 and 1 describing how confident the model is for this label/class. |
|
""" |
|
|
|
def unnormalize_box(bbox, width, height): |
|
return [ |
|
width * (bbox[0] / 1000), |
|
height * (bbox[1] / 1000), |
|
width * (bbox[2] / 1000), |
|
height * (bbox[3] / 1000), |
|
] |
|
|
|
image = data.pop("inputs", data) |
|
|
|
encoding = self.processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt") |
|
offset_mapping = encoding.pop('offset_mapping') |
|
|
|
|
|
outputs = self.model(**encoding) |
|
|
|
|
|
predictions = outputs.logits.argmax(-1).squeeze().tolist() |
|
token_boxes = encoding.bbox.squeeze().tolist() |
|
|
|
|
|
|
|
width, height = image.size |
|
|
|
true_predictions = [self.id2label[prediction] for prediction in predictions] |
|
true_boxes = [unnormalize_box(box, width, height) for box in token_boxes] |
|
is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0 |
|
|
|
|
|
return {"labels": true_predictions, "boxes": true_boxes, "is_subword": is_subword} |
|
|