Commit
·
2845cc4
1
Parent(s):
f13b9ad
Update custom_interface.py
Browse files- custom_interface.py +97 -0
custom_interface.py
CHANGED
|
@@ -1,6 +1,103 @@
|
|
| 1 |
import torch
|
| 2 |
from speechbrain.inference.interfaces import Pretrained
|
| 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
class CustomEncoderClassifier(Pretrained):
|
| 6 |
"""A ready-to-use class for utterance-level classification (e.g, speaker-id,
|
|
|
|
| 1 |
import torch
|
| 2 |
from speechbrain.inference.interfaces import Pretrained
|
| 3 |
|
| 4 |
+
class AttentionMLP(torch.nn.Module):
|
| 5 |
+
def __init__(self, input_dim, hidden_dim):
|
| 6 |
+
super(AttentionMLP, self).__init__()
|
| 7 |
+
self.layers = torch.nn.Sequential(
|
| 8 |
+
torch.nn.Linear(input_dim, hidden_dim),
|
| 9 |
+
torch.nn.ReLU(),
|
| 10 |
+
torch.nn.Linear(hidden_dim, 1, bias=False),
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
def forward(self, x):
|
| 14 |
+
x = self.layers(x)
|
| 15 |
+
att_w = torch.nn.functional.softmax(x, dim=2)
|
| 16 |
+
return att_w
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class Discrete_EmbeddingLayer(torch.nn.Module):
|
| 20 |
+
"""This class handles embedding layers for discrete tokens.
|
| 21 |
+
|
| 22 |
+
Arguments
|
| 23 |
+
---------
|
| 24 |
+
num_codebooks: int ,
|
| 25 |
+
number of codebooks of the tokenizer.
|
| 26 |
+
vocab_size : int,
|
| 27 |
+
size of the dictionary of embeddings
|
| 28 |
+
emb_dim: int ,
|
| 29 |
+
the size of each embedding vector
|
| 30 |
+
pad_index: int (default: 0),
|
| 31 |
+
If specified, the entries at padding_idx do not contribute to the gradient.
|
| 32 |
+
init: boolean (default: False):
|
| 33 |
+
If set to True, init the embedding with the tokenizer embedding otherwise init randomly.
|
| 34 |
+
freeze: boolean (default: False)
|
| 35 |
+
If True, the embedding is frozen. If False, the model will be trained
|
| 36 |
+
alongside with the rest of the pipeline.
|
| 37 |
+
|
| 38 |
+
Example
|
| 39 |
+
-------
|
| 40 |
+
>>> from speechbrain.lobes.models.huggingface_transformers.encodec import Encodec
|
| 41 |
+
>>> model_hub = "facebook/encodec_24khz"
|
| 42 |
+
>>> save_path = "savedir"
|
| 43 |
+
>>> model = Encodec(model_hub, save_path)
|
| 44 |
+
>>> audio = torch.randn(4, 1000)
|
| 45 |
+
>>> length = torch.tensor([1.0, .5, .75, 1.0])
|
| 46 |
+
>>> tokens, emb = model.encode(audio, length)
|
| 47 |
+
>>> print(tokens.shape)
|
| 48 |
+
torch.Size([4, 4, 2])
|
| 49 |
+
>>> emb= Discrete_EmbeddingLayer(2, 1024, 1024)
|
| 50 |
+
>>> in_emb = emb(tokens)
|
| 51 |
+
>>> print(in_emb.shape)
|
| 52 |
+
torch.Size([4, 4, 2, 1024])
|
| 53 |
+
"""
|
| 54 |
+
|
| 55 |
+
def __init__(
|
| 56 |
+
self,
|
| 57 |
+
num_codebooks,
|
| 58 |
+
vocab_size,
|
| 59 |
+
emb_dim,
|
| 60 |
+
pad_index=0,
|
| 61 |
+
init=False,
|
| 62 |
+
freeze=False,
|
| 63 |
+
):
|
| 64 |
+
super(Discrete_EmbeddingLayer, self).__init__()
|
| 65 |
+
self.vocab_size = vocab_size
|
| 66 |
+
self.num_codebooks = num_codebooks
|
| 67 |
+
self.freeze = freeze
|
| 68 |
+
self.embedding = torch.nn.Embedding(
|
| 69 |
+
num_codebooks * vocab_size, emb_dim
|
| 70 |
+
).requires_grad_(not self.freeze)
|
| 71 |
+
self.init = init
|
| 72 |
+
|
| 73 |
+
def init_embedding(self, weights):
|
| 74 |
+
with torch.no_grad():
|
| 75 |
+
self.embedding.weight = torch.nn.Parameter(weights)
|
| 76 |
+
|
| 77 |
+
def forward(self, in_tokens):
|
| 78 |
+
"""Computes the embedding for discrete tokens.
|
| 79 |
+
a sample.
|
| 80 |
+
|
| 81 |
+
Arguments
|
| 82 |
+
---------
|
| 83 |
+
in_tokens : torch.Tensor
|
| 84 |
+
A (Batch x Time x num_codebooks)
|
| 85 |
+
audio sample
|
| 86 |
+
Returns
|
| 87 |
+
-------
|
| 88 |
+
in_embs : torch.Tensor
|
| 89 |
+
"""
|
| 90 |
+
with torch.set_grad_enabled(not self.freeze):
|
| 91 |
+
# Add unique token IDs across diffrent codebooks by adding num_codebooks * vocab_size
|
| 92 |
+
in_tokens += torch.arange(
|
| 93 |
+
0,
|
| 94 |
+
self.num_codebooks * self.vocab_size,
|
| 95 |
+
self.vocab_size,
|
| 96 |
+
device=in_tokens.device,
|
| 97 |
+
)
|
| 98 |
+
# Forward Pass to embedding and
|
| 99 |
+
in_embs = self.embedding(in_tokens)
|
| 100 |
+
return in_embs
|
| 101 |
|
| 102 |
class CustomEncoderClassifier(Pretrained):
|
| 103 |
"""A ready-to-use class for utterance-level classification (e.g, speaker-id,
|