add base model code
Browse files- .gitignore +3 -0
- README.md +37 -0
- check_install.py +15 -0
- setup_tpu_vm_venv.sh +19 -0
- train.py +707 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
.vscode
|
2 |
+
venv
|
3 |
+
*.pyc
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
tags: vae
|
4 |
+
license: apache-2.0
|
5 |
+
---
|
6 |
+
|
7 |
+
# T5-VAE-Wiki (flax)
|
8 |
+
|
9 |
+
A Transformer-VAE made using flax.
|
10 |
+
|
11 |
+
Try the [demo] (TODO)!
|
12 |
+
|
13 |
+
It has been trained to interpolate on sentences form wikipedia.
|
14 |
+
|
15 |
+
Done as part of Huggingface community training ([see forum post](https://discuss.huggingface.co/t/train-a-vae-to-interpolate-on-english-sentences/7548)).
|
16 |
+
|
17 |
+
Builds on T5, using an autoencoder to convert it into an MMD-VAE ([more info](http://fras.uk/ml/large%20prior-free%20models/transformer-vae/2020/08/13/Transformers-as-Variational-Autoencoders.html)).
|
18 |
+
|
19 |
+
## How to use from the 🤗/transformers library
|
20 |
+
|
21 |
+
Add model repo as a submodule:
|
22 |
+
```bash
|
23 |
+
git submodule add https://github.com/Fraser-Greenlee/t5-vae-flax.git t5_vae_flax
|
24 |
+
```
|
25 |
+
|
26 |
+
```python
|
27 |
+
from transformers import AutoTokenizer
|
28 |
+
from t5_vae_flax.src.t5_vae import FlaxT5VaeForAutoencoding
|
29 |
+
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained("t5-base")
|
31 |
+
|
32 |
+
model = FlaxT5VaeForAutoencoding.from_pretrained("flax-community/t5-vae-python")
|
33 |
+
```
|
34 |
+
|
35 |
+
## Setup
|
36 |
+
|
37 |
+
Run `setup_tpu_vm_venv.sh` to setup a virtual enviroment on a TPU VM for training.
|
check_install.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import FlaxRobertaModel, RobertaTokenizerFast
|
2 |
+
from datasets import load_dataset
|
3 |
+
import jax
|
4 |
+
|
5 |
+
dataset = load_dataset('oscar', "unshuffled_deduplicated_en", split='train', streaming=True)
|
6 |
+
|
7 |
+
dummy_input = next(iter(dataset))["text"]
|
8 |
+
|
9 |
+
tokenizer = RobertaTokenizerFast.from_pretrained("roberta-base")
|
10 |
+
input_ids = tokenizer(dummy_input, return_tensors="np").input_ids[:, :10]
|
11 |
+
|
12 |
+
model = FlaxRobertaModel.from_pretrained("julien-c/dummy-unknown")
|
13 |
+
|
14 |
+
# run a forward pass, should return an object `FlaxBaseModelOutputWithPooling`
|
15 |
+
z = model(input_ids)
|
setup_tpu_vm_venv.sh
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# setup training on a TPU VM
|
2 |
+
rm -fr venv
|
3 |
+
python3 -m venv venv
|
4 |
+
source venv/bin/activate
|
5 |
+
pip install -U pip
|
6 |
+
pip install -U wheel
|
7 |
+
pip install requests
|
8 |
+
pip install "jax[tpu]>=0.2.16" -f https://storage.googleapis.com/jax-releases/libtpu_releases.html
|
9 |
+
|
10 |
+
cd ..
|
11 |
+
git clone https://github.com/huggingface/transformers.git
|
12 |
+
cd transformers
|
13 |
+
pip install -e ".[flax]"
|
14 |
+
cd ..
|
15 |
+
|
16 |
+
git clone https://github.com/huggingface/datasets.git
|
17 |
+
cd datasets
|
18 |
+
pip install -e ".[streaming]"
|
19 |
+
cd ..
|
train.py
ADDED
@@ -0,0 +1,707 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
Pre-training/Fine-tuning seq2seq models on autoencoding a dataset.
|
3 |
+
|
4 |
+
TODO:
|
5 |
+
- [ ] Add reg loss
|
6 |
+
- [x] calculate MMD loss
|
7 |
+
- [ ] schedule MMD loss weight
|
8 |
+
- [ ] Add these params to the training arguments.
|
9 |
+
|
10 |
+
reg_schedule_k (:obj:`float`, `optional`, defaults to 0.0025):
|
11 |
+
Multiplied by global_step in a sigmoid, more gradually increase regulariser loss weight.
|
12 |
+
reg_schedule_b (:obj:`float`, `optional`, defaults to 6.25):
|
13 |
+
Added to global step in sigmoid, further delays increase in regulariser loss weight.
|
14 |
+
use_extra_logs (:obj:`bool`, `optional`, defaults to False):
|
15 |
+
Store extra logs during each training inference.
|
16 |
+
|
17 |
+
- [ ] Send the schedule time to the compute_loss method and calculate a coefficient based on that.
|
18 |
+
'''
|
19 |
+
import logging
|
20 |
+
import math
|
21 |
+
import os
|
22 |
+
import sys
|
23 |
+
import time
|
24 |
+
from dataclasses import dataclass, field
|
25 |
+
from pathlib import Path
|
26 |
+
from typing import Callable, Optional
|
27 |
+
|
28 |
+
import datasets
|
29 |
+
from datasets import Dataset, load_dataset
|
30 |
+
from tqdm import tqdm
|
31 |
+
|
32 |
+
import jax
|
33 |
+
import jax.numpy as jnp
|
34 |
+
import optax
|
35 |
+
import transformers
|
36 |
+
from flax import jax_utils, traverse_util
|
37 |
+
from flax.jax_utils import unreplicate
|
38 |
+
from flax.training import train_state
|
39 |
+
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
|
40 |
+
from transformers import (
|
41 |
+
AutoTokenizer,
|
42 |
+
HfArgumentParser,
|
43 |
+
TrainingArguments,
|
44 |
+
is_tensorboard_available,
|
45 |
+
)
|
46 |
+
from transformers.models.t5.modeling_flax_t5 import shift_tokens_right
|
47 |
+
from transformers.testing_utils import CaptureLogger
|
48 |
+
|
49 |
+
from t5_vae_flax.src.t5_vae import FlaxT5VaeForAutoencoding
|
50 |
+
from t5_vae_flax.src.config import T5VaeConfig
|
51 |
+
|
52 |
+
|
53 |
+
logger = logging.getLogger(__name__)
|
54 |
+
|
55 |
+
|
56 |
+
@dataclass
|
57 |
+
class ModelArguments:
|
58 |
+
"""
|
59 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
|
60 |
+
"""
|
61 |
+
|
62 |
+
model_name_or_path: Optional[str] = field(
|
63 |
+
default=None,
|
64 |
+
metadata={
|
65 |
+
"help": "The model checkpoint for weights initialization."
|
66 |
+
"Don't set if you want to train a model from scratch."
|
67 |
+
},
|
68 |
+
)
|
69 |
+
t5_model_name_or_path: Optional[str] = field(
|
70 |
+
default=None,
|
71 |
+
metadata={
|
72 |
+
"help": "The T5 model checkpoint for weights initialization."
|
73 |
+
"Needed when not starting from a T5-VAE model."
|
74 |
+
},
|
75 |
+
)
|
76 |
+
n_latent_tokens: Optional[int] = field(
|
77 |
+
default=6,
|
78 |
+
metadata={
|
79 |
+
"help": "Number of latent tokens (must be less than seq length)."
|
80 |
+
},
|
81 |
+
)
|
82 |
+
latent_token_size: Optional[int] = field(
|
83 |
+
default=32,
|
84 |
+
metadata={
|
85 |
+
"help": "Number of dimensions to use for each latent token."
|
86 |
+
},
|
87 |
+
)
|
88 |
+
add_special_tokens: bool = field(
|
89 |
+
default=False,
|
90 |
+
metadata={"help": "Add these special tokens to the tokenizer: {'pad_token': '<PAD>', 'bos_token': '<BOS>', 'eos_token': '<EOS>'}"},
|
91 |
+
)
|
92 |
+
config_path: Optional[str] = field(
|
93 |
+
default=None, metadata={"help": "Pretrained config path"}
|
94 |
+
)
|
95 |
+
tokenizer_name: Optional[str] = field(
|
96 |
+
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
97 |
+
)
|
98 |
+
cache_dir: Optional[str] = field(
|
99 |
+
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
|
100 |
+
)
|
101 |
+
use_fast_tokenizer: bool = field(
|
102 |
+
default=True,
|
103 |
+
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
104 |
+
)
|
105 |
+
dtype: Optional[str] = field(
|
106 |
+
default="float32",
|
107 |
+
metadata={
|
108 |
+
"help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`."
|
109 |
+
},
|
110 |
+
)
|
111 |
+
|
112 |
+
|
113 |
+
@dataclass
|
114 |
+
class DataTrainingArguments:
|
115 |
+
"""
|
116 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
117 |
+
"""
|
118 |
+
|
119 |
+
dataset_name: Optional[str] = field(
|
120 |
+
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
121 |
+
)
|
122 |
+
dataset_config_name: Optional[str] = field(
|
123 |
+
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
124 |
+
)
|
125 |
+
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
|
126 |
+
validation_file: Optional[str] = field(
|
127 |
+
default=None,
|
128 |
+
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
|
129 |
+
)
|
130 |
+
max_train_samples: Optional[int] = field(
|
131 |
+
default=None,
|
132 |
+
metadata={
|
133 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
134 |
+
"value if set."
|
135 |
+
},
|
136 |
+
)
|
137 |
+
max_eval_samples: Optional[int] = field(
|
138 |
+
default=None,
|
139 |
+
metadata={
|
140 |
+
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
141 |
+
"value if set."
|
142 |
+
},
|
143 |
+
)
|
144 |
+
overwrite_cache: bool = field(
|
145 |
+
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
146 |
+
)
|
147 |
+
validation_split_percentage: Optional[int] = field(
|
148 |
+
default=5,
|
149 |
+
metadata={
|
150 |
+
"help": "The percentage of the train set used as validation set in case there's no validation split"
|
151 |
+
},
|
152 |
+
)
|
153 |
+
block_size: Optional[int] = field(
|
154 |
+
default=None,
|
155 |
+
metadata={
|
156 |
+
"help": "Optional input sequence length after tokenization. "
|
157 |
+
"The training dataset will be truncated in block of this size for training. "
|
158 |
+
"Default to the model max input length for single sentence inputs (take into account special tokens)."
|
159 |
+
},
|
160 |
+
)
|
161 |
+
streaming: bool = field(
|
162 |
+
default=False, metadata={"help": "Stream the dataset."}
|
163 |
+
)
|
164 |
+
overwrite_cache: bool = field(
|
165 |
+
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
166 |
+
)
|
167 |
+
preprocessing_num_workers: Optional[int] = field(
|
168 |
+
default=None,
|
169 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
170 |
+
)
|
171 |
+
|
172 |
+
def __post_init__(self):
|
173 |
+
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
|
174 |
+
raise ValueError("Need either a dataset name or a training/validation file.")
|
175 |
+
else:
|
176 |
+
if self.train_file is not None:
|
177 |
+
extension = self.train_file.split(".")[-1]
|
178 |
+
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
|
179 |
+
if self.validation_file is not None:
|
180 |
+
extension = self.validation_file.split(".")[-1]
|
181 |
+
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
|
182 |
+
|
183 |
+
|
184 |
+
class TrainState(train_state.TrainState):
|
185 |
+
dropout_rng: jnp.ndarray
|
186 |
+
|
187 |
+
def replicate(self):
|
188 |
+
return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng))
|
189 |
+
|
190 |
+
|
191 |
+
def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False):
|
192 |
+
"""
|
193 |
+
Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices.
|
194 |
+
Shuffle batches if `shuffle` is `True`.
|
195 |
+
"""
|
196 |
+
steps_per_epoch = len(dataset) // batch_size
|
197 |
+
|
198 |
+
if shuffle:
|
199 |
+
batch_idx = jax.random.permutation(rng, len(dataset))
|
200 |
+
else:
|
201 |
+
batch_idx = jnp.arange(len(dataset))
|
202 |
+
|
203 |
+
batch_idx = batch_idx[: steps_per_epoch * batch_size] # Skip incomplete batch.
|
204 |
+
batch_idx = batch_idx.reshape((steps_per_epoch, batch_size))
|
205 |
+
|
206 |
+
for idx in batch_idx:
|
207 |
+
batch = dataset[idx]
|
208 |
+
batch = {k: jnp.array(v) for k, v in batch.items()}
|
209 |
+
|
210 |
+
batch = shard(batch)
|
211 |
+
|
212 |
+
yield batch
|
213 |
+
|
214 |
+
|
215 |
+
def write_train_metric(summary_writer, train_metrics, train_time, step):
|
216 |
+
summary_writer.scalar("train_time", train_time, step)
|
217 |
+
|
218 |
+
train_metrics = get_metrics(train_metrics)
|
219 |
+
for key, vals in train_metrics.items():
|
220 |
+
tag = f"train_{key}"
|
221 |
+
for i, val in enumerate(vals):
|
222 |
+
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
|
223 |
+
|
224 |
+
|
225 |
+
def write_eval_metric(summary_writer, eval_metrics, step):
|
226 |
+
for metric_name, value in eval_metrics.items():
|
227 |
+
summary_writer.scalar(f"eval_{metric_name}", value, step)
|
228 |
+
|
229 |
+
|
230 |
+
def create_learning_rate_fn(
|
231 |
+
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
|
232 |
+
) -> Callable[[int], jnp.array]:
|
233 |
+
"""Returns a linear warmup, linear_decay learning rate function."""
|
234 |
+
steps_per_epoch = train_ds_size // train_batch_size
|
235 |
+
num_train_steps = steps_per_epoch * num_train_epochs
|
236 |
+
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
|
237 |
+
decay_fn = optax.linear_schedule(
|
238 |
+
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps
|
239 |
+
)
|
240 |
+
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
|
241 |
+
return schedule_fn
|
242 |
+
|
243 |
+
|
244 |
+
def main():
|
245 |
+
# See all possible arguments in src/transformers/training_args.py
|
246 |
+
# or by passing the --help flag to this script.
|
247 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
248 |
+
|
249 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
250 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
251 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
252 |
+
# let's parse it to get our arguments.
|
253 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
254 |
+
else:
|
255 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
256 |
+
|
257 |
+
if (
|
258 |
+
os.path.exists(training_args.output_dir)
|
259 |
+
and os.listdir(training_args.output_dir)
|
260 |
+
and training_args.do_train
|
261 |
+
and not training_args.overwrite_output_dir
|
262 |
+
):
|
263 |
+
raise ValueError(
|
264 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty."
|
265 |
+
"Use --overwrite_output_dir to overcome."
|
266 |
+
)
|
267 |
+
|
268 |
+
if data_args.block_size is None:
|
269 |
+
raise Exception('Must set block_size so we know what length of sequence to autoencode.')
|
270 |
+
|
271 |
+
# Make one log on every process with the configuration for debugging.
|
272 |
+
logging.basicConfig(
|
273 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
274 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
275 |
+
level=logging.INFO,
|
276 |
+
)
|
277 |
+
# Setup logging, we only want one process per machine to log things on the screen.
|
278 |
+
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
|
279 |
+
if jax.process_index() == 0:
|
280 |
+
datasets.utils.logging.set_verbosity_warning()
|
281 |
+
transformers.utils.logging.set_verbosity_info()
|
282 |
+
else:
|
283 |
+
datasets.utils.logging.set_verbosity_error()
|
284 |
+
transformers.utils.logging.set_verbosity_error()
|
285 |
+
|
286 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
287 |
+
logger.info(f"Training/evaluation parameters {training_args}")
|
288 |
+
|
289 |
+
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
|
290 |
+
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
|
291 |
+
# (the dataset will be downloaded automatically from the datasets Hub).
|
292 |
+
#
|
293 |
+
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
|
294 |
+
# 'text' is found. You can easily tweak this behavior (see below).
|
295 |
+
#
|
296 |
+
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
|
297 |
+
# download the dataset.
|
298 |
+
if data_args.dataset_name is not None:
|
299 |
+
# Downloading and loading a dataset from the hub.
|
300 |
+
dataset = load_dataset(
|
301 |
+
data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, streaming=data_args.streaming, keep_in_memory=False
|
302 |
+
)
|
303 |
+
|
304 |
+
if "validation" not in dataset.keys():
|
305 |
+
dataset["validation"] = load_dataset(
|
306 |
+
data_args.dataset_name,
|
307 |
+
data_args.dataset_config_name,
|
308 |
+
split=f"train[:{data_args.validation_split_percentage}%]",
|
309 |
+
cache_dir=model_args.cache_dir,
|
310 |
+
)
|
311 |
+
dataset["train"] = load_dataset(
|
312 |
+
data_args.dataset_name,
|
313 |
+
data_args.dataset_config_name,
|
314 |
+
split=f"train[{data_args.validation_split_percentage}%:]",
|
315 |
+
cache_dir=model_args.cache_dir,
|
316 |
+
)
|
317 |
+
else:
|
318 |
+
data_files = {}
|
319 |
+
if data_args.train_file is not None:
|
320 |
+
data_files["train"] = data_args.train_file
|
321 |
+
if data_args.validation_file is not None:
|
322 |
+
data_files["validation"] = data_args.validation_file
|
323 |
+
extension = data_args.train_file.split(".")[-1]
|
324 |
+
if extension == "txt":
|
325 |
+
extension = "text"
|
326 |
+
dataset = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
|
327 |
+
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
328 |
+
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
329 |
+
|
330 |
+
# Load pretrained model and tokenizer
|
331 |
+
|
332 |
+
# Distributed training:
|
333 |
+
# The .from_pretrained methods guarantee that only one local process can concurrently
|
334 |
+
# download model & vocab.
|
335 |
+
|
336 |
+
if model_args.config_path:
|
337 |
+
config = T5VaeConfig.from_pretrained(
|
338 |
+
model_args.config_path, cache_dir=model_args.cache_dir
|
339 |
+
)
|
340 |
+
elif model_args.model_name_or_path:
|
341 |
+
config = T5VaeConfig.from_pretrained(
|
342 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir
|
343 |
+
)
|
344 |
+
else:
|
345 |
+
config = T5VaeConfig(**model_args.__dict__)
|
346 |
+
logger.warning("You are instantiating a new config instance from scratch.")
|
347 |
+
|
348 |
+
if model_args.tokenizer_name:
|
349 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
350 |
+
model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
|
351 |
+
)
|
352 |
+
elif model_args.t5_model_name_or_path:
|
353 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
354 |
+
model_args.t5_model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
|
355 |
+
)
|
356 |
+
else:
|
357 |
+
raise ValueError(
|
358 |
+
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
|
359 |
+
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
|
360 |
+
)
|
361 |
+
|
362 |
+
if model_args.model_name_or_path:
|
363 |
+
model = FlaxT5VaeForAutoencoding.from_pretrained(
|
364 |
+
model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
|
365 |
+
)
|
366 |
+
assert model.params['t5']['shared']['embedding'].shape[0] == len(tokenizer), "T5 Tokenizer doesn't match T5Vae embedding size."
|
367 |
+
else:
|
368 |
+
vocab_size = len(tokenizer)
|
369 |
+
config.t5.vocab_size = vocab_size
|
370 |
+
config.vocab_size = vocab_size
|
371 |
+
logger.info("Training new model from scratch.")
|
372 |
+
model = FlaxT5VaeForAutoencoding(
|
373 |
+
config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
|
374 |
+
)
|
375 |
+
|
376 |
+
if model_args.add_special_tokens:
|
377 |
+
special_tokens_dict = {'pad_token': '<PAD>', 'bos_token': '<BOS>', 'eos_token': '<EOS>'}
|
378 |
+
num_added_tokens = tokenizer.add_special_tokens(special_tokens_dict)
|
379 |
+
print('We have added', num_added_tokens, 'tokens to GPT2')
|
380 |
+
model.resize_token_embeddings(len(tokenizer))
|
381 |
+
assert tokenizer.pad_token == '<PAD>'
|
382 |
+
|
383 |
+
# Preprocessing the datasets.
|
384 |
+
# First we tokenize all the texts.
|
385 |
+
if training_args.do_train:
|
386 |
+
column_names = dataset["train"].column_names
|
387 |
+
else:
|
388 |
+
column_names = dataset["validation"].column_names
|
389 |
+
text_column_name = "text" if "text" in column_names else column_names[0]
|
390 |
+
|
391 |
+
# since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
|
392 |
+
tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")
|
393 |
+
|
394 |
+
def tokenize_function(examples):
|
395 |
+
with CaptureLogger(tok_logger) as cl:
|
396 |
+
output = tokenizer(examples[text_column_name])
|
397 |
+
# clm input could be much much longer than block_size
|
398 |
+
if "Token indices sequence length is longer than the" in cl.out:
|
399 |
+
tok_logger.warning(
|
400 |
+
"^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits before being passed to the model."
|
401 |
+
)
|
402 |
+
return output
|
403 |
+
|
404 |
+
# remove dataset tasks
|
405 |
+
for k in dataset.keys():
|
406 |
+
dataset[k].info.task_templates = []
|
407 |
+
|
408 |
+
tokenized_datasets = dataset.map(
|
409 |
+
tokenize_function,
|
410 |
+
batched=True,
|
411 |
+
num_proc=data_args.preprocessing_num_workers,
|
412 |
+
remove_columns=column_names,
|
413 |
+
load_from_cache_file=not data_args.overwrite_cache,
|
414 |
+
)
|
415 |
+
|
416 |
+
if data_args.block_size > tokenizer.model_max_length:
|
417 |
+
logger.warning(
|
418 |
+
f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model"
|
419 |
+
f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
|
420 |
+
)
|
421 |
+
block_size = min(data_args.block_size, tokenizer.model_max_length)
|
422 |
+
|
423 |
+
pad_token_id, start_token_id = tokenizer.pad_token_id, config.decoder_start_token_id
|
424 |
+
|
425 |
+
def clip_texts(examples):
|
426 |
+
examples["labels"] = examples["input_ids"].copy()
|
427 |
+
|
428 |
+
for i, input_ids in enumerate(examples["input_ids"]):
|
429 |
+
if len(input_ids) > block_size:
|
430 |
+
for k in examples.keys():
|
431 |
+
examples[k][i] = examples[k][i][:block_size]
|
432 |
+
elif len(input_ids) < block_size:
|
433 |
+
delta = block_size - len(input_ids)
|
434 |
+
examples['input_ids'][i] = examples['input_ids'][i] + [pad_token_id] * delta
|
435 |
+
examples['attention_mask'][i] = examples['attention_mask'][i] + [0] * delta
|
436 |
+
examples['labels'][i] = examples['labels'][i] + [-100] * delta
|
437 |
+
|
438 |
+
return examples
|
439 |
+
|
440 |
+
logger.info('clip_texts...')
|
441 |
+
clipped_lm_datasets = tokenized_datasets.map(
|
442 |
+
clip_texts,
|
443 |
+
batched=True,
|
444 |
+
num_proc=data_args.preprocessing_num_workers,
|
445 |
+
load_from_cache_file=not data_args.overwrite_cache,
|
446 |
+
)
|
447 |
+
|
448 |
+
def add_decoder_input_ids(examples):
|
449 |
+
arr_input_ids = jnp.array(examples["input_ids"])
|
450 |
+
pad = pad_token_id * jnp.ones((arr_input_ids.shape[0], 1), dtype=jnp.int32)
|
451 |
+
arr_pad_input_ids = jnp.concatenate((arr_input_ids, pad), axis=1)
|
452 |
+
examples['decoder_input_ids'] = shift_tokens_right(arr_pad_input_ids, pad_token_id, start_token_id)
|
453 |
+
|
454 |
+
arr_attention_mask = jnp.array(examples['attention_mask'])
|
455 |
+
ones = jnp.ones((arr_attention_mask.shape[0], 1), dtype=jnp.int32)
|
456 |
+
examples['decoder_attention_mask'] = jnp.concatenate((ones, arr_attention_mask), axis=1)
|
457 |
+
|
458 |
+
for k in ['decoder_input_ids', 'decoder_attention_mask']:
|
459 |
+
examples[k] = examples[k].tolist()
|
460 |
+
|
461 |
+
return examples
|
462 |
+
|
463 |
+
logger.info('add_decoder_input_ids...')
|
464 |
+
lm_datasets = clipped_lm_datasets.map(
|
465 |
+
add_decoder_input_ids,
|
466 |
+
batched=True,
|
467 |
+
num_proc=data_args.preprocessing_num_workers,
|
468 |
+
load_from_cache_file=not data_args.overwrite_cache,
|
469 |
+
)
|
470 |
+
|
471 |
+
if training_args.do_train:
|
472 |
+
if "train" not in tokenized_datasets:
|
473 |
+
raise ValueError("--do_train requires a train dataset")
|
474 |
+
train_dataset = lm_datasets["train"]
|
475 |
+
if data_args.max_train_samples is not None:
|
476 |
+
train_dataset = train_dataset.select(range(data_args.max_train_samples))
|
477 |
+
|
478 |
+
if training_args.do_eval:
|
479 |
+
if "validation" not in tokenized_datasets:
|
480 |
+
raise ValueError("--do_eval requires a validation dataset")
|
481 |
+
eval_dataset = lm_datasets["validation"]
|
482 |
+
if data_args.max_eval_samples is not None:
|
483 |
+
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
|
484 |
+
|
485 |
+
# Enable tensorboard only on the master node
|
486 |
+
has_tensorboard = is_tensorboard_available()
|
487 |
+
if has_tensorboard and jax.process_index() == 0:
|
488 |
+
try:
|
489 |
+
from flax.metrics.tensorboard import SummaryWriter
|
490 |
+
|
491 |
+
summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
|
492 |
+
except ImportError as ie:
|
493 |
+
has_tensorboard = False
|
494 |
+
logger.warning(
|
495 |
+
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
|
496 |
+
)
|
497 |
+
else:
|
498 |
+
logger.warning(
|
499 |
+
"Unable to display metrics through TensorBoard because the package is not installed: "
|
500 |
+
"Please run pip install tensorboard to enable."
|
501 |
+
)
|
502 |
+
|
503 |
+
# Initialize our training
|
504 |
+
rng = jax.random.PRNGKey(training_args.seed)
|
505 |
+
rng, dropout_rng = jax.random.split(rng)
|
506 |
+
|
507 |
+
# Store some constant
|
508 |
+
num_epochs = int(training_args.num_train_epochs)
|
509 |
+
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
|
510 |
+
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
|
511 |
+
steps_per_epoch = len(train_dataset) // train_batch_size
|
512 |
+
total_train_steps = steps_per_epoch * num_epochs
|
513 |
+
|
514 |
+
# Create learning rate schedule
|
515 |
+
linear_decay_lr_schedule_fn = create_learning_rate_fn(
|
516 |
+
len(train_dataset),
|
517 |
+
train_batch_size,
|
518 |
+
training_args.num_train_epochs,
|
519 |
+
training_args.warmup_steps,
|
520 |
+
training_args.learning_rate,
|
521 |
+
)
|
522 |
+
|
523 |
+
# We use Optax's "masking" functionality to not apply weight decay
|
524 |
+
# to bias and LayerNorm scale parameters. decay_mask_fn returns a
|
525 |
+
# mask boolean with the same structure as the parameters.
|
526 |
+
# The mask is True for parameters that should be decayed.
|
527 |
+
# Note that this mask is specifically adapted for FlaxGPT2.
|
528 |
+
# For other models, one should correct the layer norm parameter naming
|
529 |
+
# accordingly.
|
530 |
+
def decay_mask_fn(params):
|
531 |
+
flat_params = traverse_util.flatten_dict(params)
|
532 |
+
flat_mask = {
|
533 |
+
path: (path[-1] != "bias" and path[-2:] not in [("ln_1", "scale"), ("ln_2", "scale"), ("ln_f", "scale")])
|
534 |
+
for path in flat_params
|
535 |
+
}
|
536 |
+
return traverse_util.unflatten_dict(flat_mask)
|
537 |
+
|
538 |
+
# create adam optimizer
|
539 |
+
if training_args.adafactor:
|
540 |
+
# We use the default parameters here to initialize adafactor,
|
541 |
+
# For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
|
542 |
+
optimizer = optax.adafactor(
|
543 |
+
learning_rate=linear_decay_lr_schedule_fn,
|
544 |
+
)
|
545 |
+
else:
|
546 |
+
optimizer = optax.adamw(
|
547 |
+
learning_rate=linear_decay_lr_schedule_fn,
|
548 |
+
b1=training_args.adam_beta1,
|
549 |
+
b2=training_args.adam_beta2,
|
550 |
+
eps=training_args.adam_epsilon,
|
551 |
+
weight_decay=training_args.weight_decay,
|
552 |
+
mask=decay_mask_fn,
|
553 |
+
)
|
554 |
+
|
555 |
+
# Setup train state
|
556 |
+
state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=optimizer, dropout_rng=dropout_rng)
|
557 |
+
|
558 |
+
def compute_kernel(x, y):
|
559 |
+
x_size = x.shape[0]
|
560 |
+
y_size = y.shape[0]
|
561 |
+
dim = x.shape[1]
|
562 |
+
tiled_x = jnp.repeat(jnp.reshape(x, (x_size, 1, dim)), y_size, axis=1)
|
563 |
+
tiled_y = jnp.repeat(jnp.reshape(y, (1, y_size, dim)), x_size, axis=0)
|
564 |
+
return jnp.exp(-jnp.mean((tiled_x - tiled_y) ** 2, axis=2) / dim * 1.0)
|
565 |
+
|
566 |
+
def compute_mmd(x, y):
|
567 |
+
x_kernel = compute_kernel(x, x)
|
568 |
+
y_kernel = compute_kernel(y, y)
|
569 |
+
xy_kernel = compute_kernel(x, y)
|
570 |
+
return jnp.mean(x_kernel) + jnp.mean(y_kernel) - 2 * jnp.mean(xy_kernel)
|
571 |
+
|
572 |
+
def regulariser_loss(latent_codes, rng):
|
573 |
+
true_samples = jax.random.normal(rng, latent_codes.shape)
|
574 |
+
# return jax.vmap(compute_mmd)(true_samples, latent_codes)
|
575 |
+
return compute_mmd(true_samples, latent_codes)
|
576 |
+
|
577 |
+
def loss_fn(logits, labels, latent_codes, regulariser_rng):
|
578 |
+
shift_logits = logits[..., :-1, :]
|
579 |
+
loss = optax.softmax_cross_entropy(shift_logits, onehot(labels, logits.shape[-1]))
|
580 |
+
reg_loss = regulariser_loss(latent_codes.reshape(-1, latent_codes.shape[-1]), regulariser_rng)
|
581 |
+
return loss.mean() + reg_loss.mean()
|
582 |
+
|
583 |
+
# Define gradient update step fn
|
584 |
+
def train_step(state, batch):
|
585 |
+
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)
|
586 |
+
new_dropout_rng, regulariser_rng = jax.random.split(new_dropout_rng)
|
587 |
+
|
588 |
+
def compute_loss(params):
|
589 |
+
labels = batch.pop("labels")
|
590 |
+
outputs = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)
|
591 |
+
loss = loss_fn(outputs[0], labels, outputs[1], regulariser_rng)
|
592 |
+
return loss
|
593 |
+
|
594 |
+
grad_fn = jax.value_and_grad(compute_loss)
|
595 |
+
loss, grad = grad_fn(state.params)
|
596 |
+
grad = jax.lax.pmean(grad, "batch")
|
597 |
+
|
598 |
+
new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng)
|
599 |
+
|
600 |
+
metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}
|
601 |
+
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
602 |
+
|
603 |
+
return new_state, metrics
|
604 |
+
|
605 |
+
# Define eval fn
|
606 |
+
def eval_step(params, rng, batch):
|
607 |
+
labels = batch.pop("labels")
|
608 |
+
logits, latent_codes = model(**batch, params=params, train=False)[:2]
|
609 |
+
loss = loss_fn(logits, labels, latent_codes, rng)
|
610 |
+
|
611 |
+
# summarize metrics
|
612 |
+
metrics = {"loss": loss}
|
613 |
+
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
614 |
+
return metrics
|
615 |
+
|
616 |
+
# Create parallel version of the train and eval step
|
617 |
+
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
|
618 |
+
p_eval_step = jax.pmap(eval_step, "batch")
|
619 |
+
|
620 |
+
# Replicate the train state on each device
|
621 |
+
state = state.replicate()
|
622 |
+
|
623 |
+
logger.info("***** Running training *****")
|
624 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
625 |
+
logger.info(f" Num Epochs = {num_epochs}")
|
626 |
+
logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
|
627 |
+
logger.info(f" Total train batch size (w. parallel & distributed) = {train_batch_size}")
|
628 |
+
logger.info(f" Total optimization steps = {total_train_steps}")
|
629 |
+
|
630 |
+
train_time = 0
|
631 |
+
train_metrics = []
|
632 |
+
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
|
633 |
+
for epoch in epochs:
|
634 |
+
# ======================== Training ================================
|
635 |
+
train_start = time.time()
|
636 |
+
|
637 |
+
# Create sampling rng
|
638 |
+
rng, input_rng = jax.random.split(rng)
|
639 |
+
|
640 |
+
# Generate an epoch by shuffling sampling indices from the train dataset
|
641 |
+
train_loader = data_loader(input_rng, train_dataset, train_batch_size, shuffle=True)
|
642 |
+
steps_per_epoch = len(train_dataset) // train_batch_size
|
643 |
+
# train
|
644 |
+
for step in tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False):
|
645 |
+
batch = next(train_loader)
|
646 |
+
state, train_metric = p_train_step(state, batch)
|
647 |
+
train_metrics.append(train_metric)
|
648 |
+
|
649 |
+
cur_step = epoch * (len(train_dataset) // train_batch_size) + step
|
650 |
+
|
651 |
+
if cur_step % training_args.logging_steps == 0 and cur_step > 0:
|
652 |
+
# Save metrics
|
653 |
+
train_metric = unreplicate(train_metric)
|
654 |
+
train_time += time.time() - train_start
|
655 |
+
if has_tensorboard and jax.process_index() == 0:
|
656 |
+
write_train_metric(summary_writer, train_metrics, train_time, cur_step)
|
657 |
+
|
658 |
+
epochs.write(
|
659 |
+
f"Step... ({cur_step} | Loss: {train_metric['loss'].mean()}, Learning Rate: {train_metric['learning_rate'].mean()})"
|
660 |
+
)
|
661 |
+
|
662 |
+
train_metrics = []
|
663 |
+
|
664 |
+
if cur_step % training_args.eval_steps == 0 and cur_step > 0:
|
665 |
+
# ======================== Evaluating ==============================
|
666 |
+
eval_metrics = []
|
667 |
+
eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size)
|
668 |
+
eval_steps = len(eval_dataset) // eval_batch_size
|
669 |
+
for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False):
|
670 |
+
# Model forward
|
671 |
+
batch = next(eval_loader)
|
672 |
+
metrics = p_eval_step(state.params, state.dropout_rng, batch)
|
673 |
+
eval_metrics.append(metrics)
|
674 |
+
|
675 |
+
# normalize eval metrics
|
676 |
+
eval_metrics = get_metrics(eval_metrics)
|
677 |
+
eval_metrics = jax.tree_map(jnp.mean, eval_metrics)
|
678 |
+
|
679 |
+
try:
|
680 |
+
eval_metrics["perplexity"] = math.exp(eval_metrics["loss"])
|
681 |
+
except OverflowError:
|
682 |
+
eval_metrics["perplexity"] = float("inf")
|
683 |
+
|
684 |
+
# Print metrics and update progress bar
|
685 |
+
desc = f"Step... ({cur_step} | Eval Loss: {eval_metrics['loss']} | Eval Perplexity: {eval_metrics['perplexity']})"
|
686 |
+
epochs.write(desc)
|
687 |
+
epochs.desc = desc
|
688 |
+
|
689 |
+
# Save metrics
|
690 |
+
if has_tensorboard and jax.process_index() == 0:
|
691 |
+
cur_step = epoch * (len(train_dataset) // train_batch_size)
|
692 |
+
write_eval_metric(summary_writer, eval_metrics, cur_step)
|
693 |
+
|
694 |
+
if cur_step % training_args.save_steps == 0 and cur_step > 0:
|
695 |
+
# save checkpoint after each epoch and push checkpoint to the hub
|
696 |
+
if jax.process_index() == 0:
|
697 |
+
params = jax.device_get(unreplicate(state.params))
|
698 |
+
model.save_pretrained(
|
699 |
+
training_args.output_dir,
|
700 |
+
params=params,
|
701 |
+
push_to_hub=training_args.push_to_hub,
|
702 |
+
commit_message=f"Saving weights and logs of step {cur_step}",
|
703 |
+
)
|
704 |
+
|
705 |
+
|
706 |
+
if __name__ == "__main__":
|
707 |
+
main()
|