add base model code
Browse files- .gitignore +3 -0
- README.md +37 -0
- check_install.py +15 -0
- setup_tpu_vm_venv.sh +19 -0
- train.py +707 -0
    	
        .gitignore
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            .vscode
         | 
| 2 | 
            +
            venv
         | 
| 3 | 
            +
            *.pyc
         | 
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,37 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            language: en
         | 
| 3 | 
            +
            tags: vae
         | 
| 4 | 
            +
            license: apache-2.0
         | 
| 5 | 
            +
            ---
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # T5-VAE-Wiki (flax)
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            A Transformer-VAE made using flax.
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            Try the [demo] (TODO)!
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            It has been trained to interpolate on sentences form wikipedia.
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            Done as part of Huggingface community training ([see forum post](https://discuss.huggingface.co/t/train-a-vae-to-interpolate-on-english-sentences/7548)).
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            Builds on T5, using an autoencoder to convert it into an MMD-VAE ([more info](http://fras.uk/ml/large%20prior-free%20models/transformer-vae/2020/08/13/Transformers-as-Variational-Autoencoders.html)).
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            ## How to use from the 🤗/transformers library
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            Add model repo as a submodule:
         | 
| 22 | 
            +
            ```bash
         | 
| 23 | 
            +
            git submodule add https://github.com/Fraser-Greenlee/t5-vae-flax.git t5_vae_flax
         | 
| 24 | 
            +
            ```
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            ```python
         | 
| 27 | 
            +
            from transformers import AutoTokenizer
         | 
| 28 | 
            +
            from t5_vae_flax.src.t5_vae import FlaxT5VaeForAutoencoding
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            tokenizer = AutoTokenizer.from_pretrained("t5-base")
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            model = FlaxT5VaeForAutoencoding.from_pretrained("flax-community/t5-vae-python")
         | 
| 33 | 
            +
            ```
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            ## Setup
         | 
| 36 | 
            +
             | 
| 37 | 
            +
            Run `setup_tpu_vm_venv.sh` to setup a virtual enviroment on a TPU VM for training.
         | 
    	
        check_install.py
    ADDED
    
    | @@ -0,0 +1,15 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from transformers import FlaxRobertaModel, RobertaTokenizerFast
         | 
| 2 | 
            +
            from datasets import load_dataset
         | 
| 3 | 
            +
            import jax
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            dataset = load_dataset('oscar', "unshuffled_deduplicated_en", split='train', streaming=True)
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            dummy_input = next(iter(dataset))["text"]
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            tokenizer = RobertaTokenizerFast.from_pretrained("roberta-base")
         | 
| 10 | 
            +
            input_ids = tokenizer(dummy_input, return_tensors="np").input_ids[:, :10]
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            model = FlaxRobertaModel.from_pretrained("julien-c/dummy-unknown")
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            # run a forward pass, should return an object `FlaxBaseModelOutputWithPooling`
         | 
| 15 | 
            +
            z = model(input_ids)
         | 
    	
        setup_tpu_vm_venv.sh
    ADDED
    
    | @@ -0,0 +1,19 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # setup training on a TPU VM
         | 
| 2 | 
            +
            rm -fr venv
         | 
| 3 | 
            +
            python3 -m venv venv
         | 
| 4 | 
            +
            source venv/bin/activate
         | 
| 5 | 
            +
            pip install -U pip
         | 
| 6 | 
            +
            pip install -U wheel
         | 
| 7 | 
            +
            pip install requests
         | 
| 8 | 
            +
            pip install "jax[tpu]>=0.2.16" -f https://storage.googleapis.com/jax-releases/libtpu_releases.html
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            cd ..
         | 
| 11 | 
            +
            git clone https://github.com/huggingface/transformers.git
         | 
| 12 | 
            +
            cd transformers
         | 
| 13 | 
            +
            pip install -e ".[flax]"
         | 
| 14 | 
            +
            cd ..
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            git clone https://github.com/huggingface/datasets.git
         | 
| 17 | 
            +
            cd datasets
         | 
| 18 | 
            +
            pip install -e ".[streaming]"
         | 
| 19 | 
            +
            cd ..
         | 
    	
        train.py
    ADDED
    
    | @@ -0,0 +1,707 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            '''
         | 
| 2 | 
            +
                Pre-training/Fine-tuning seq2seq models on autoencoding a dataset.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
                TODO:
         | 
| 5 | 
            +
                - [ ] Add reg loss
         | 
| 6 | 
            +
                    - [x] calculate MMD loss
         | 
| 7 | 
            +
                    - [ ] schedule MMD loss weight
         | 
| 8 | 
            +
                        - [ ] Add these params to the training arguments.
         | 
| 9 | 
            +
             | 
| 10 | 
            +
                            reg_schedule_k (:obj:`float`, `optional`, defaults to 0.0025):
         | 
| 11 | 
            +
                                Multiplied by global_step in a sigmoid, more gradually increase regulariser loss weight.
         | 
| 12 | 
            +
                            reg_schedule_b (:obj:`float`, `optional`, defaults to 6.25):
         | 
| 13 | 
            +
                                Added to global step in sigmoid, further delays increase in regulariser loss weight.
         | 
| 14 | 
            +
                            use_extra_logs (:obj:`bool`, `optional`, defaults to False):
         | 
| 15 | 
            +
                                Store extra logs during each training inference.
         | 
| 16 | 
            +
             | 
| 17 | 
            +
                        - [ ] Send the schedule time to the compute_loss method and calculate a coefficient based on that.
         | 
| 18 | 
            +
            '''
         | 
| 19 | 
            +
            import logging
         | 
| 20 | 
            +
            import math
         | 
| 21 | 
            +
            import os
         | 
| 22 | 
            +
            import sys
         | 
| 23 | 
            +
            import time
         | 
| 24 | 
            +
            from dataclasses import dataclass, field
         | 
| 25 | 
            +
            from pathlib import Path
         | 
| 26 | 
            +
            from typing import Callable, Optional
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            import datasets
         | 
| 29 | 
            +
            from datasets import Dataset, load_dataset
         | 
| 30 | 
            +
            from tqdm import tqdm
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            import jax
         | 
| 33 | 
            +
            import jax.numpy as jnp
         | 
| 34 | 
            +
            import optax
         | 
| 35 | 
            +
            import transformers
         | 
| 36 | 
            +
            from flax import jax_utils, traverse_util
         | 
| 37 | 
            +
            from flax.jax_utils import unreplicate
         | 
| 38 | 
            +
            from flax.training import train_state
         | 
| 39 | 
            +
            from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
         | 
| 40 | 
            +
            from transformers import (
         | 
| 41 | 
            +
                AutoTokenizer,
         | 
| 42 | 
            +
                HfArgumentParser,
         | 
| 43 | 
            +
                TrainingArguments,
         | 
| 44 | 
            +
                is_tensorboard_available,
         | 
| 45 | 
            +
            )
         | 
| 46 | 
            +
            from transformers.models.t5.modeling_flax_t5 import shift_tokens_right
         | 
| 47 | 
            +
            from transformers.testing_utils import CaptureLogger
         | 
| 48 | 
            +
             | 
| 49 | 
            +
            from t5_vae_flax.src.t5_vae import FlaxT5VaeForAutoencoding
         | 
| 50 | 
            +
            from t5_vae_flax.src.config import T5VaeConfig
         | 
| 51 | 
            +
             | 
| 52 | 
            +
             | 
| 53 | 
            +
            logger = logging.getLogger(__name__)
         | 
| 54 | 
            +
             | 
| 55 | 
            +
             | 
| 56 | 
            +
            @dataclass
         | 
| 57 | 
            +
            class ModelArguments:
         | 
| 58 | 
            +
                """
         | 
| 59 | 
            +
                Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
         | 
| 60 | 
            +
                """
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                model_name_or_path: Optional[str] = field(
         | 
| 63 | 
            +
                    default=None,
         | 
| 64 | 
            +
                    metadata={
         | 
| 65 | 
            +
                        "help": "The model checkpoint for weights initialization."
         | 
| 66 | 
            +
                        "Don't set if you want to train a model from scratch."
         | 
| 67 | 
            +
                    },
         | 
| 68 | 
            +
                )
         | 
| 69 | 
            +
                t5_model_name_or_path: Optional[str] = field(
         | 
| 70 | 
            +
                    default=None,
         | 
| 71 | 
            +
                    metadata={
         | 
| 72 | 
            +
                        "help": "The T5 model checkpoint for weights initialization."
         | 
| 73 | 
            +
                        "Needed when not starting from a T5-VAE model."
         | 
| 74 | 
            +
                    },
         | 
| 75 | 
            +
                )
         | 
| 76 | 
            +
                n_latent_tokens: Optional[int] = field(
         | 
| 77 | 
            +
                    default=6,
         | 
| 78 | 
            +
                    metadata={
         | 
| 79 | 
            +
                        "help": "Number of latent tokens (must be less than seq length)."
         | 
| 80 | 
            +
                    },
         | 
| 81 | 
            +
                )
         | 
| 82 | 
            +
                latent_token_size: Optional[int] = field(
         | 
| 83 | 
            +
                    default=32,
         | 
| 84 | 
            +
                    metadata={
         | 
| 85 | 
            +
                        "help": "Number of dimensions to use for each latent token."
         | 
| 86 | 
            +
                    },
         | 
| 87 | 
            +
                )
         | 
| 88 | 
            +
                add_special_tokens: bool = field(
         | 
| 89 | 
            +
                    default=False,
         | 
| 90 | 
            +
                    metadata={"help": "Add these special tokens to the tokenizer: {'pad_token': '<PAD>', 'bos_token': '<BOS>', 'eos_token': '<EOS>'}"},
         | 
| 91 | 
            +
                )
         | 
| 92 | 
            +
                config_path: Optional[str] = field(
         | 
| 93 | 
            +
                    default=None, metadata={"help": "Pretrained config path"}
         | 
| 94 | 
            +
                )
         | 
| 95 | 
            +
                tokenizer_name: Optional[str] = field(
         | 
| 96 | 
            +
                    default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
         | 
| 97 | 
            +
                )
         | 
| 98 | 
            +
                cache_dir: Optional[str] = field(
         | 
| 99 | 
            +
                    default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
         | 
| 100 | 
            +
                )
         | 
| 101 | 
            +
                use_fast_tokenizer: bool = field(
         | 
| 102 | 
            +
                    default=True,
         | 
| 103 | 
            +
                    metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
         | 
| 104 | 
            +
                )
         | 
| 105 | 
            +
                dtype: Optional[str] = field(
         | 
| 106 | 
            +
                    default="float32",
         | 
| 107 | 
            +
                    metadata={
         | 
| 108 | 
            +
                        "help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`."
         | 
| 109 | 
            +
                    },
         | 
| 110 | 
            +
                )
         | 
| 111 | 
            +
             | 
| 112 | 
            +
             | 
| 113 | 
            +
            @dataclass
         | 
| 114 | 
            +
            class DataTrainingArguments:
         | 
| 115 | 
            +
                """
         | 
| 116 | 
            +
                Arguments pertaining to what data we are going to input our model for training and eval.
         | 
| 117 | 
            +
                """
         | 
| 118 | 
            +
             | 
| 119 | 
            +
                dataset_name: Optional[str] = field(
         | 
| 120 | 
            +
                    default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
         | 
| 121 | 
            +
                )
         | 
| 122 | 
            +
                dataset_config_name: Optional[str] = field(
         | 
| 123 | 
            +
                    default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
         | 
| 124 | 
            +
                )
         | 
| 125 | 
            +
                train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
         | 
| 126 | 
            +
                validation_file: Optional[str] = field(
         | 
| 127 | 
            +
                    default=None,
         | 
| 128 | 
            +
                    metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
         | 
| 129 | 
            +
                )
         | 
| 130 | 
            +
                max_train_samples: Optional[int] = field(
         | 
| 131 | 
            +
                    default=None,
         | 
| 132 | 
            +
                    metadata={
         | 
| 133 | 
            +
                        "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
         | 
| 134 | 
            +
                        "value if set."
         | 
| 135 | 
            +
                    },
         | 
| 136 | 
            +
                )
         | 
| 137 | 
            +
                max_eval_samples: Optional[int] = field(
         | 
| 138 | 
            +
                    default=None,
         | 
| 139 | 
            +
                    metadata={
         | 
| 140 | 
            +
                        "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
         | 
| 141 | 
            +
                        "value if set."
         | 
| 142 | 
            +
                    },
         | 
| 143 | 
            +
                )
         | 
| 144 | 
            +
                overwrite_cache: bool = field(
         | 
| 145 | 
            +
                    default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
         | 
| 146 | 
            +
                )
         | 
| 147 | 
            +
                validation_split_percentage: Optional[int] = field(
         | 
| 148 | 
            +
                    default=5,
         | 
| 149 | 
            +
                    metadata={
         | 
| 150 | 
            +
                        "help": "The percentage of the train set used as validation set in case there's no validation split"
         | 
| 151 | 
            +
                    },
         | 
| 152 | 
            +
                )
         | 
| 153 | 
            +
                block_size: Optional[int] = field(
         | 
| 154 | 
            +
                    default=None,
         | 
| 155 | 
            +
                    metadata={
         | 
| 156 | 
            +
                        "help": "Optional input sequence length after tokenization. "
         | 
| 157 | 
            +
                        "The training dataset will be truncated in block of this size for training. "
         | 
| 158 | 
            +
                        "Default to the model max input length for single sentence inputs (take into account special tokens)."
         | 
| 159 | 
            +
                    },
         | 
| 160 | 
            +
                )
         | 
| 161 | 
            +
                streaming: bool = field(
         | 
| 162 | 
            +
                    default=False, metadata={"help": "Stream the dataset."}
         | 
| 163 | 
            +
                )
         | 
| 164 | 
            +
                overwrite_cache: bool = field(
         | 
| 165 | 
            +
                    default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
         | 
| 166 | 
            +
                )
         | 
| 167 | 
            +
                preprocessing_num_workers: Optional[int] = field(
         | 
| 168 | 
            +
                    default=None,
         | 
| 169 | 
            +
                    metadata={"help": "The number of processes to use for the preprocessing."},
         | 
| 170 | 
            +
                )
         | 
| 171 | 
            +
             | 
| 172 | 
            +
                def __post_init__(self):
         | 
| 173 | 
            +
                    if self.dataset_name is None and self.train_file is None and self.validation_file is None:
         | 
| 174 | 
            +
                        raise ValueError("Need either a dataset name or a training/validation file.")
         | 
| 175 | 
            +
                    else:
         | 
| 176 | 
            +
                        if self.train_file is not None:
         | 
| 177 | 
            +
                            extension = self.train_file.split(".")[-1]
         | 
| 178 | 
            +
                            assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
         | 
| 179 | 
            +
                        if self.validation_file is not None:
         | 
| 180 | 
            +
                            extension = self.validation_file.split(".")[-1]
         | 
| 181 | 
            +
                            assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
         | 
| 182 | 
            +
             | 
| 183 | 
            +
             | 
| 184 | 
            +
            class TrainState(train_state.TrainState):
         | 
| 185 | 
            +
                dropout_rng: jnp.ndarray
         | 
| 186 | 
            +
             | 
| 187 | 
            +
                def replicate(self):
         | 
| 188 | 
            +
                    return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng))
         | 
| 189 | 
            +
             | 
| 190 | 
            +
             | 
| 191 | 
            +
            def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False):
         | 
| 192 | 
            +
                """
         | 
| 193 | 
            +
                Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices.
         | 
| 194 | 
            +
                Shuffle batches if `shuffle` is `True`.
         | 
| 195 | 
            +
                """
         | 
| 196 | 
            +
                steps_per_epoch = len(dataset) // batch_size
         | 
| 197 | 
            +
             | 
| 198 | 
            +
                if shuffle:
         | 
| 199 | 
            +
                    batch_idx = jax.random.permutation(rng, len(dataset))
         | 
| 200 | 
            +
                else:
         | 
| 201 | 
            +
                    batch_idx = jnp.arange(len(dataset))
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                batch_idx = batch_idx[: steps_per_epoch * batch_size]  # Skip incomplete batch.
         | 
| 204 | 
            +
                batch_idx = batch_idx.reshape((steps_per_epoch, batch_size))
         | 
| 205 | 
            +
             | 
| 206 | 
            +
                for idx in batch_idx:
         | 
| 207 | 
            +
                    batch = dataset[idx]
         | 
| 208 | 
            +
                    batch = {k: jnp.array(v) for k, v in batch.items()}
         | 
| 209 | 
            +
             | 
| 210 | 
            +
                    batch = shard(batch)
         | 
| 211 | 
            +
             | 
| 212 | 
            +
                    yield batch
         | 
| 213 | 
            +
             | 
| 214 | 
            +
             | 
| 215 | 
            +
            def write_train_metric(summary_writer, train_metrics, train_time, step):
         | 
| 216 | 
            +
                summary_writer.scalar("train_time", train_time, step)
         | 
| 217 | 
            +
             | 
| 218 | 
            +
                train_metrics = get_metrics(train_metrics)
         | 
| 219 | 
            +
                for key, vals in train_metrics.items():
         | 
| 220 | 
            +
                    tag = f"train_{key}"
         | 
| 221 | 
            +
                    for i, val in enumerate(vals):
         | 
| 222 | 
            +
                        summary_writer.scalar(tag, val, step - len(vals) + i + 1)
         | 
| 223 | 
            +
             | 
| 224 | 
            +
             | 
| 225 | 
            +
            def write_eval_metric(summary_writer, eval_metrics, step):
         | 
| 226 | 
            +
                for metric_name, value in eval_metrics.items():
         | 
| 227 | 
            +
                    summary_writer.scalar(f"eval_{metric_name}", value, step)
         | 
| 228 | 
            +
             | 
| 229 | 
            +
             | 
| 230 | 
            +
            def create_learning_rate_fn(
         | 
| 231 | 
            +
                train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
         | 
| 232 | 
            +
            ) -> Callable[[int], jnp.array]:
         | 
| 233 | 
            +
                """Returns a linear warmup, linear_decay learning rate function."""
         | 
| 234 | 
            +
                steps_per_epoch = train_ds_size // train_batch_size
         | 
| 235 | 
            +
                num_train_steps = steps_per_epoch * num_train_epochs
         | 
| 236 | 
            +
                warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
         | 
| 237 | 
            +
                decay_fn = optax.linear_schedule(
         | 
| 238 | 
            +
                    init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps
         | 
| 239 | 
            +
                )
         | 
| 240 | 
            +
                schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
         | 
| 241 | 
            +
                return schedule_fn
         | 
| 242 | 
            +
             | 
| 243 | 
            +
             | 
| 244 | 
            +
            def main():
         | 
| 245 | 
            +
                # See all possible arguments in src/transformers/training_args.py
         | 
| 246 | 
            +
                # or by passing the --help flag to this script.
         | 
| 247 | 
            +
                # We now keep distinct sets of args, for a cleaner separation of concerns.
         | 
| 248 | 
            +
             | 
| 249 | 
            +
                parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
         | 
| 250 | 
            +
                if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
         | 
| 251 | 
            +
                    # If we pass only one argument to the script and it's the path to a json file,
         | 
| 252 | 
            +
                    # let's parse it to get our arguments.
         | 
| 253 | 
            +
                    model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
         | 
| 254 | 
            +
                else:
         | 
| 255 | 
            +
                    model_args, data_args, training_args = parser.parse_args_into_dataclasses()
         | 
| 256 | 
            +
             | 
| 257 | 
            +
                if (
         | 
| 258 | 
            +
                    os.path.exists(training_args.output_dir)
         | 
| 259 | 
            +
                    and os.listdir(training_args.output_dir)
         | 
| 260 | 
            +
                    and training_args.do_train
         | 
| 261 | 
            +
                    and not training_args.overwrite_output_dir
         | 
| 262 | 
            +
                ):
         | 
| 263 | 
            +
                    raise ValueError(
         | 
| 264 | 
            +
                        f"Output directory ({training_args.output_dir}) already exists and is not empty."
         | 
| 265 | 
            +
                        "Use --overwrite_output_dir to overcome."
         | 
| 266 | 
            +
                    )
         | 
| 267 | 
            +
             | 
| 268 | 
            +
                if data_args.block_size is None:
         | 
| 269 | 
            +
                    raise Exception('Must set block_size so we know what length of sequence to autoencode.')
         | 
| 270 | 
            +
             | 
| 271 | 
            +
                # Make one log on every process with the configuration for debugging.
         | 
| 272 | 
            +
                logging.basicConfig(
         | 
| 273 | 
            +
                    format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
         | 
| 274 | 
            +
                    datefmt="%m/%d/%Y %H:%M:%S",
         | 
| 275 | 
            +
                    level=logging.INFO,
         | 
| 276 | 
            +
                )
         | 
| 277 | 
            +
                # Setup logging, we only want one process per machine to log things on the screen.
         | 
| 278 | 
            +
                logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
         | 
| 279 | 
            +
                if jax.process_index() == 0:
         | 
| 280 | 
            +
                    datasets.utils.logging.set_verbosity_warning()
         | 
| 281 | 
            +
                    transformers.utils.logging.set_verbosity_info()
         | 
| 282 | 
            +
                else:
         | 
| 283 | 
            +
                    datasets.utils.logging.set_verbosity_error()
         | 
| 284 | 
            +
                    transformers.utils.logging.set_verbosity_error()
         | 
| 285 | 
            +
             | 
| 286 | 
            +
                # Set the verbosity to info of the Transformers logger (on main process only):
         | 
| 287 | 
            +
                logger.info(f"Training/evaluation parameters {training_args}")
         | 
| 288 | 
            +
             | 
| 289 | 
            +
                #  Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
         | 
| 290 | 
            +
                # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
         | 
| 291 | 
            +
                # (the dataset will be downloaded automatically from the datasets Hub).
         | 
| 292 | 
            +
                #
         | 
| 293 | 
            +
                # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
         | 
| 294 | 
            +
                # 'text' is found. You can easily tweak this behavior (see below).
         | 
| 295 | 
            +
                #
         | 
| 296 | 
            +
                # In distributed training, the load_dataset function guarantees that only one local process can concurrently
         | 
| 297 | 
            +
                # download the dataset.
         | 
| 298 | 
            +
                if data_args.dataset_name is not None:
         | 
| 299 | 
            +
                    # Downloading and loading a dataset from the hub.
         | 
| 300 | 
            +
                    dataset = load_dataset(
         | 
| 301 | 
            +
                        data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, streaming=data_args.streaming, keep_in_memory=False
         | 
| 302 | 
            +
                    )
         | 
| 303 | 
            +
             | 
| 304 | 
            +
                    if "validation" not in dataset.keys():
         | 
| 305 | 
            +
                        dataset["validation"] = load_dataset(
         | 
| 306 | 
            +
                            data_args.dataset_name,
         | 
| 307 | 
            +
                            data_args.dataset_config_name,
         | 
| 308 | 
            +
                            split=f"train[:{data_args.validation_split_percentage}%]",
         | 
| 309 | 
            +
                            cache_dir=model_args.cache_dir,
         | 
| 310 | 
            +
                        )
         | 
| 311 | 
            +
                        dataset["train"] = load_dataset(
         | 
| 312 | 
            +
                            data_args.dataset_name,
         | 
| 313 | 
            +
                            data_args.dataset_config_name,
         | 
| 314 | 
            +
                            split=f"train[{data_args.validation_split_percentage}%:]",
         | 
| 315 | 
            +
                            cache_dir=model_args.cache_dir,
         | 
| 316 | 
            +
                        )
         | 
| 317 | 
            +
                else:
         | 
| 318 | 
            +
                    data_files = {}
         | 
| 319 | 
            +
                    if data_args.train_file is not None:
         | 
| 320 | 
            +
                        data_files["train"] = data_args.train_file
         | 
| 321 | 
            +
                    if data_args.validation_file is not None:
         | 
| 322 | 
            +
                        data_files["validation"] = data_args.validation_file
         | 
| 323 | 
            +
                    extension = data_args.train_file.split(".")[-1]
         | 
| 324 | 
            +
                    if extension == "txt":
         | 
| 325 | 
            +
                        extension = "text"
         | 
| 326 | 
            +
                    dataset = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
         | 
| 327 | 
            +
                # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
         | 
| 328 | 
            +
                # https://huggingface.co/docs/datasets/loading_datasets.html.
         | 
| 329 | 
            +
             | 
| 330 | 
            +
                # Load pretrained model and tokenizer
         | 
| 331 | 
            +
             | 
| 332 | 
            +
                # Distributed training:
         | 
| 333 | 
            +
                # The .from_pretrained methods guarantee that only one local process can concurrently
         | 
| 334 | 
            +
                # download model & vocab.
         | 
| 335 | 
            +
             | 
| 336 | 
            +
                if model_args.config_path:
         | 
| 337 | 
            +
                    config = T5VaeConfig.from_pretrained(
         | 
| 338 | 
            +
                        model_args.config_path, cache_dir=model_args.cache_dir
         | 
| 339 | 
            +
                    )
         | 
| 340 | 
            +
                elif model_args.model_name_or_path:
         | 
| 341 | 
            +
                    config = T5VaeConfig.from_pretrained(
         | 
| 342 | 
            +
                        model_args.model_name_or_path, cache_dir=model_args.cache_dir
         | 
| 343 | 
            +
                    )
         | 
| 344 | 
            +
                else:
         | 
| 345 | 
            +
                    config = T5VaeConfig(**model_args.__dict__)
         | 
| 346 | 
            +
                    logger.warning("You are instantiating a new config instance from scratch.")
         | 
| 347 | 
            +
             | 
| 348 | 
            +
                if model_args.tokenizer_name:
         | 
| 349 | 
            +
                    tokenizer = AutoTokenizer.from_pretrained(
         | 
| 350 | 
            +
                        model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
         | 
| 351 | 
            +
                    )
         | 
| 352 | 
            +
                elif model_args.t5_model_name_or_path:
         | 
| 353 | 
            +
                    tokenizer = AutoTokenizer.from_pretrained(
         | 
| 354 | 
            +
                        model_args.t5_model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
         | 
| 355 | 
            +
                    )
         | 
| 356 | 
            +
                else:
         | 
| 357 | 
            +
                    raise ValueError(
         | 
| 358 | 
            +
                        "You are instantiating a new tokenizer from scratch. This is not supported by this script."
         | 
| 359 | 
            +
                        "You can do it from another script, save it, and load it from here, using --tokenizer_name."
         | 
| 360 | 
            +
                    )
         | 
| 361 | 
            +
             | 
| 362 | 
            +
                if model_args.model_name_or_path:
         | 
| 363 | 
            +
                    model = FlaxT5VaeForAutoencoding.from_pretrained(
         | 
| 364 | 
            +
                        model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
         | 
| 365 | 
            +
                    )
         | 
| 366 | 
            +
                    assert model.params['t5']['shared']['embedding'].shape[0] == len(tokenizer), "T5 Tokenizer doesn't match T5Vae embedding size."
         | 
| 367 | 
            +
                else:
         | 
| 368 | 
            +
                    vocab_size = len(tokenizer)
         | 
| 369 | 
            +
                    config.t5.vocab_size = vocab_size
         | 
| 370 | 
            +
                    config.vocab_size = vocab_size
         | 
| 371 | 
            +
                    logger.info("Training new model from scratch.")
         | 
| 372 | 
            +
                    model = FlaxT5VaeForAutoencoding(
         | 
| 373 | 
            +
                        config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
         | 
| 374 | 
            +
                    )
         | 
| 375 | 
            +
             | 
| 376 | 
            +
                if model_args.add_special_tokens:
         | 
| 377 | 
            +
                    special_tokens_dict = {'pad_token': '<PAD>', 'bos_token': '<BOS>', 'eos_token': '<EOS>'}
         | 
| 378 | 
            +
                    num_added_tokens = tokenizer.add_special_tokens(special_tokens_dict)
         | 
| 379 | 
            +
                    print('We have added', num_added_tokens, 'tokens to GPT2')
         | 
| 380 | 
            +
                    model.resize_token_embeddings(len(tokenizer))
         | 
| 381 | 
            +
                    assert tokenizer.pad_token == '<PAD>'
         | 
| 382 | 
            +
             | 
| 383 | 
            +
                # Preprocessing the datasets.
         | 
| 384 | 
            +
                # First we tokenize all the texts.
         | 
| 385 | 
            +
                if training_args.do_train:
         | 
| 386 | 
            +
                    column_names = dataset["train"].column_names
         | 
| 387 | 
            +
                else:
         | 
| 388 | 
            +
                    column_names = dataset["validation"].column_names
         | 
| 389 | 
            +
                text_column_name = "text" if "text" in column_names else column_names[0]
         | 
| 390 | 
            +
             | 
| 391 | 
            +
                # since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
         | 
| 392 | 
            +
                tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")
         | 
| 393 | 
            +
             | 
| 394 | 
            +
                def tokenize_function(examples):
         | 
| 395 | 
            +
                    with CaptureLogger(tok_logger) as cl:
         | 
| 396 | 
            +
                        output = tokenizer(examples[text_column_name])
         | 
| 397 | 
            +
                    # clm input could be much much longer than block_size
         | 
| 398 | 
            +
                    if "Token indices sequence length is longer than the" in cl.out:
         | 
| 399 | 
            +
                        tok_logger.warning(
         | 
| 400 | 
            +
                            "^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits before being passed to the model."
         | 
| 401 | 
            +
                        )
         | 
| 402 | 
            +
                    return output
         | 
| 403 | 
            +
             | 
| 404 | 
            +
                # remove dataset tasks
         | 
| 405 | 
            +
                for k in dataset.keys():
         | 
| 406 | 
            +
                    dataset[k].info.task_templates = []
         | 
| 407 | 
            +
             | 
| 408 | 
            +
                tokenized_datasets = dataset.map(
         | 
| 409 | 
            +
                    tokenize_function,
         | 
| 410 | 
            +
                    batched=True,
         | 
| 411 | 
            +
                    num_proc=data_args.preprocessing_num_workers,
         | 
| 412 | 
            +
                    remove_columns=column_names,
         | 
| 413 | 
            +
                    load_from_cache_file=not data_args.overwrite_cache,
         | 
| 414 | 
            +
                )
         | 
| 415 | 
            +
             | 
| 416 | 
            +
                if data_args.block_size > tokenizer.model_max_length:
         | 
| 417 | 
            +
                    logger.warning(
         | 
| 418 | 
            +
                        f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model"
         | 
| 419 | 
            +
                        f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
         | 
| 420 | 
            +
                    )
         | 
| 421 | 
            +
                block_size = min(data_args.block_size, tokenizer.model_max_length)
         | 
| 422 | 
            +
             | 
| 423 | 
            +
                pad_token_id, start_token_id = tokenizer.pad_token_id, config.decoder_start_token_id
         | 
| 424 | 
            +
             | 
| 425 | 
            +
                def clip_texts(examples):
         | 
| 426 | 
            +
                    examples["labels"] = examples["input_ids"].copy()
         | 
| 427 | 
            +
             | 
| 428 | 
            +
                    for i, input_ids in enumerate(examples["input_ids"]):
         | 
| 429 | 
            +
                        if len(input_ids) > block_size:
         | 
| 430 | 
            +
                            for k in examples.keys():
         | 
| 431 | 
            +
                                examples[k][i] = examples[k][i][:block_size]
         | 
| 432 | 
            +
                        elif len(input_ids) < block_size:
         | 
| 433 | 
            +
                            delta = block_size - len(input_ids)
         | 
| 434 | 
            +
                            examples['input_ids'][i] = examples['input_ids'][i] + [pad_token_id] * delta
         | 
| 435 | 
            +
                            examples['attention_mask'][i] = examples['attention_mask'][i] + [0] * delta
         | 
| 436 | 
            +
                            examples['labels'][i] = examples['labels'][i] + [-100] * delta
         | 
| 437 | 
            +
             | 
| 438 | 
            +
                    return examples
         | 
| 439 | 
            +
             | 
| 440 | 
            +
                logger.info('clip_texts...')
         | 
| 441 | 
            +
                clipped_lm_datasets = tokenized_datasets.map(
         | 
| 442 | 
            +
                    clip_texts,
         | 
| 443 | 
            +
                    batched=True,
         | 
| 444 | 
            +
                    num_proc=data_args.preprocessing_num_workers,
         | 
| 445 | 
            +
                    load_from_cache_file=not data_args.overwrite_cache,
         | 
| 446 | 
            +
                )
         | 
| 447 | 
            +
             | 
| 448 | 
            +
                def add_decoder_input_ids(examples):
         | 
| 449 | 
            +
                    arr_input_ids = jnp.array(examples["input_ids"])
         | 
| 450 | 
            +
                    pad = pad_token_id * jnp.ones((arr_input_ids.shape[0], 1), dtype=jnp.int32)
         | 
| 451 | 
            +
                    arr_pad_input_ids = jnp.concatenate((arr_input_ids, pad), axis=1)
         | 
| 452 | 
            +
                    examples['decoder_input_ids'] = shift_tokens_right(arr_pad_input_ids, pad_token_id, start_token_id)
         | 
| 453 | 
            +
             | 
| 454 | 
            +
                    arr_attention_mask = jnp.array(examples['attention_mask'])
         | 
| 455 | 
            +
                    ones = jnp.ones((arr_attention_mask.shape[0], 1), dtype=jnp.int32)
         | 
| 456 | 
            +
                    examples['decoder_attention_mask'] = jnp.concatenate((ones, arr_attention_mask), axis=1)
         | 
| 457 | 
            +
             | 
| 458 | 
            +
                    for k in ['decoder_input_ids', 'decoder_attention_mask']:
         | 
| 459 | 
            +
                        examples[k] = examples[k].tolist()
         | 
| 460 | 
            +
             | 
| 461 | 
            +
                    return examples
         | 
| 462 | 
            +
             | 
| 463 | 
            +
                logger.info('add_decoder_input_ids...')
         | 
| 464 | 
            +
                lm_datasets = clipped_lm_datasets.map(
         | 
| 465 | 
            +
                    add_decoder_input_ids,
         | 
| 466 | 
            +
                    batched=True,
         | 
| 467 | 
            +
                    num_proc=data_args.preprocessing_num_workers,
         | 
| 468 | 
            +
                    load_from_cache_file=not data_args.overwrite_cache,
         | 
| 469 | 
            +
                )
         | 
| 470 | 
            +
             | 
| 471 | 
            +
                if training_args.do_train:
         | 
| 472 | 
            +
                    if "train" not in tokenized_datasets:
         | 
| 473 | 
            +
                        raise ValueError("--do_train requires a train dataset")
         | 
| 474 | 
            +
                    train_dataset = lm_datasets["train"]
         | 
| 475 | 
            +
                    if data_args.max_train_samples is not None:
         | 
| 476 | 
            +
                        train_dataset = train_dataset.select(range(data_args.max_train_samples))
         | 
| 477 | 
            +
             | 
| 478 | 
            +
                if training_args.do_eval:
         | 
| 479 | 
            +
                    if "validation" not in tokenized_datasets:
         | 
| 480 | 
            +
                        raise ValueError("--do_eval requires a validation dataset")
         | 
| 481 | 
            +
                    eval_dataset = lm_datasets["validation"]
         | 
| 482 | 
            +
                    if data_args.max_eval_samples is not None:
         | 
| 483 | 
            +
                        eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
         | 
| 484 | 
            +
             | 
| 485 | 
            +
                # Enable tensorboard only on the master node
         | 
| 486 | 
            +
                has_tensorboard = is_tensorboard_available()
         | 
| 487 | 
            +
                if has_tensorboard and jax.process_index() == 0:
         | 
| 488 | 
            +
                    try:
         | 
| 489 | 
            +
                        from flax.metrics.tensorboard import SummaryWriter
         | 
| 490 | 
            +
             | 
| 491 | 
            +
                        summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
         | 
| 492 | 
            +
                    except ImportError as ie:
         | 
| 493 | 
            +
                        has_tensorboard = False
         | 
| 494 | 
            +
                        logger.warning(
         | 
| 495 | 
            +
                            f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
         | 
| 496 | 
            +
                        )
         | 
| 497 | 
            +
                else:
         | 
| 498 | 
            +
                    logger.warning(
         | 
| 499 | 
            +
                        "Unable to display metrics through TensorBoard because the package is not installed: "
         | 
| 500 | 
            +
                        "Please run pip install tensorboard to enable."
         | 
| 501 | 
            +
                    )
         | 
| 502 | 
            +
             | 
| 503 | 
            +
                # Initialize our training
         | 
| 504 | 
            +
                rng = jax.random.PRNGKey(training_args.seed)
         | 
| 505 | 
            +
                rng, dropout_rng = jax.random.split(rng)
         | 
| 506 | 
            +
             | 
| 507 | 
            +
                # Store some constant
         | 
| 508 | 
            +
                num_epochs = int(training_args.num_train_epochs)
         | 
| 509 | 
            +
                train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
         | 
| 510 | 
            +
                eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
         | 
| 511 | 
            +
                steps_per_epoch = len(train_dataset) // train_batch_size
         | 
| 512 | 
            +
                total_train_steps = steps_per_epoch * num_epochs
         | 
| 513 | 
            +
             | 
| 514 | 
            +
                # Create learning rate schedule
         | 
| 515 | 
            +
                linear_decay_lr_schedule_fn = create_learning_rate_fn(
         | 
| 516 | 
            +
                    len(train_dataset),
         | 
| 517 | 
            +
                    train_batch_size,
         | 
| 518 | 
            +
                    training_args.num_train_epochs,
         | 
| 519 | 
            +
                    training_args.warmup_steps,
         | 
| 520 | 
            +
                    training_args.learning_rate,
         | 
| 521 | 
            +
                )
         | 
| 522 | 
            +
             | 
| 523 | 
            +
                # We use Optax's "masking" functionality to not apply weight decay
         | 
| 524 | 
            +
                # to bias and LayerNorm scale parameters. decay_mask_fn returns a
         | 
| 525 | 
            +
                # mask boolean with the same structure as the parameters.
         | 
| 526 | 
            +
                # The mask is True for parameters that should be decayed.
         | 
| 527 | 
            +
                # Note that this mask is specifically adapted for FlaxGPT2.
         | 
| 528 | 
            +
                # For other models, one should correct the layer norm parameter naming
         | 
| 529 | 
            +
                # accordingly.
         | 
| 530 | 
            +
                def decay_mask_fn(params):
         | 
| 531 | 
            +
                    flat_params = traverse_util.flatten_dict(params)
         | 
| 532 | 
            +
                    flat_mask = {
         | 
| 533 | 
            +
                        path: (path[-1] != "bias" and path[-2:] not in [("ln_1", "scale"), ("ln_2", "scale"), ("ln_f", "scale")])
         | 
| 534 | 
            +
                        for path in flat_params
         | 
| 535 | 
            +
                    }
         | 
| 536 | 
            +
                    return traverse_util.unflatten_dict(flat_mask)
         | 
| 537 | 
            +
             | 
| 538 | 
            +
                # create adam optimizer
         | 
| 539 | 
            +
                if training_args.adafactor:
         | 
| 540 | 
            +
                    # We use the default parameters here to initialize adafactor,
         | 
| 541 | 
            +
                    # For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
         | 
| 542 | 
            +
                    optimizer = optax.adafactor(
         | 
| 543 | 
            +
                        learning_rate=linear_decay_lr_schedule_fn,
         | 
| 544 | 
            +
                    )
         | 
| 545 | 
            +
                else:
         | 
| 546 | 
            +
                    optimizer = optax.adamw(
         | 
| 547 | 
            +
                        learning_rate=linear_decay_lr_schedule_fn,
         | 
| 548 | 
            +
                        b1=training_args.adam_beta1,
         | 
| 549 | 
            +
                        b2=training_args.adam_beta2,
         | 
| 550 | 
            +
                        eps=training_args.adam_epsilon,
         | 
| 551 | 
            +
                        weight_decay=training_args.weight_decay,
         | 
| 552 | 
            +
                        mask=decay_mask_fn,
         | 
| 553 | 
            +
                    )
         | 
| 554 | 
            +
             | 
| 555 | 
            +
                # Setup train state
         | 
| 556 | 
            +
                state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=optimizer, dropout_rng=dropout_rng)
         | 
| 557 | 
            +
             | 
| 558 | 
            +
                def compute_kernel(x, y):
         | 
| 559 | 
            +
                    x_size = x.shape[0]
         | 
| 560 | 
            +
                    y_size = y.shape[0]
         | 
| 561 | 
            +
                    dim = x.shape[1]
         | 
| 562 | 
            +
                    tiled_x = jnp.repeat(jnp.reshape(x, (x_size, 1, dim)), y_size, axis=1)
         | 
| 563 | 
            +
                    tiled_y = jnp.repeat(jnp.reshape(y, (1, y_size, dim)), x_size, axis=0)
         | 
| 564 | 
            +
                    return jnp.exp(-jnp.mean((tiled_x - tiled_y) ** 2, axis=2) / dim * 1.0)
         | 
| 565 | 
            +
             | 
| 566 | 
            +
                def compute_mmd(x, y):
         | 
| 567 | 
            +
                    x_kernel = compute_kernel(x, x)
         | 
| 568 | 
            +
                    y_kernel = compute_kernel(y, y)
         | 
| 569 | 
            +
                    xy_kernel = compute_kernel(x, y)
         | 
| 570 | 
            +
                    return jnp.mean(x_kernel) + jnp.mean(y_kernel) - 2 * jnp.mean(xy_kernel)
         | 
| 571 | 
            +
             | 
| 572 | 
            +
                def regulariser_loss(latent_codes, rng):
         | 
| 573 | 
            +
                    true_samples = jax.random.normal(rng, latent_codes.shape)
         | 
| 574 | 
            +
                    # return jax.vmap(compute_mmd)(true_samples, latent_codes)
         | 
| 575 | 
            +
                    return compute_mmd(true_samples, latent_codes)
         | 
| 576 | 
            +
             | 
| 577 | 
            +
                def loss_fn(logits, labels, latent_codes, regulariser_rng):
         | 
| 578 | 
            +
                    shift_logits = logits[..., :-1, :]
         | 
| 579 | 
            +
                    loss = optax.softmax_cross_entropy(shift_logits, onehot(labels, logits.shape[-1]))
         | 
| 580 | 
            +
                    reg_loss = regulariser_loss(latent_codes.reshape(-1, latent_codes.shape[-1]), regulariser_rng)
         | 
| 581 | 
            +
                    return loss.mean() + reg_loss.mean()
         | 
| 582 | 
            +
             | 
| 583 | 
            +
                # Define gradient update step fn
         | 
| 584 | 
            +
                def train_step(state, batch):
         | 
| 585 | 
            +
                    dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)
         | 
| 586 | 
            +
                    new_dropout_rng, regulariser_rng = jax.random.split(new_dropout_rng)
         | 
| 587 | 
            +
             | 
| 588 | 
            +
                    def compute_loss(params):
         | 
| 589 | 
            +
                        labels = batch.pop("labels")
         | 
| 590 | 
            +
                        outputs = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)
         | 
| 591 | 
            +
                        loss = loss_fn(outputs[0], labels, outputs[1], regulariser_rng)
         | 
| 592 | 
            +
                        return loss
         | 
| 593 | 
            +
             | 
| 594 | 
            +
                    grad_fn = jax.value_and_grad(compute_loss)
         | 
| 595 | 
            +
                    loss, grad = grad_fn(state.params)
         | 
| 596 | 
            +
                    grad = jax.lax.pmean(grad, "batch")
         | 
| 597 | 
            +
             | 
| 598 | 
            +
                    new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng)
         | 
| 599 | 
            +
             | 
| 600 | 
            +
                    metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}
         | 
| 601 | 
            +
                    metrics = jax.lax.pmean(metrics, axis_name="batch")
         | 
| 602 | 
            +
             | 
| 603 | 
            +
                    return new_state, metrics
         | 
| 604 | 
            +
             | 
| 605 | 
            +
                # Define eval fn
         | 
| 606 | 
            +
                def eval_step(params, rng, batch):
         | 
| 607 | 
            +
                    labels = batch.pop("labels")
         | 
| 608 | 
            +
                    logits, latent_codes = model(**batch, params=params, train=False)[:2]
         | 
| 609 | 
            +
                    loss = loss_fn(logits, labels, latent_codes, rng)
         | 
| 610 | 
            +
             | 
| 611 | 
            +
                    # summarize metrics
         | 
| 612 | 
            +
                    metrics = {"loss": loss}
         | 
| 613 | 
            +
                    metrics = jax.lax.pmean(metrics, axis_name="batch")
         | 
| 614 | 
            +
                    return metrics
         | 
| 615 | 
            +
             | 
| 616 | 
            +
                # Create parallel version of the train and eval step
         | 
| 617 | 
            +
                p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
         | 
| 618 | 
            +
                p_eval_step = jax.pmap(eval_step, "batch")
         | 
| 619 | 
            +
             | 
| 620 | 
            +
                # Replicate the train state on each device
         | 
| 621 | 
            +
                state = state.replicate()
         | 
| 622 | 
            +
             | 
| 623 | 
            +
                logger.info("***** Running training *****")
         | 
| 624 | 
            +
                logger.info(f"  Num examples = {len(train_dataset)}")
         | 
| 625 | 
            +
                logger.info(f"  Num Epochs = {num_epochs}")
         | 
| 626 | 
            +
                logger.info(f"  Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
         | 
| 627 | 
            +
                logger.info(f"  Total train batch size (w. parallel & distributed) = {train_batch_size}")
         | 
| 628 | 
            +
                logger.info(f"  Total optimization steps = {total_train_steps}")
         | 
| 629 | 
            +
             | 
| 630 | 
            +
                train_time = 0
         | 
| 631 | 
            +
                train_metrics = []
         | 
| 632 | 
            +
                epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
         | 
| 633 | 
            +
                for epoch in epochs:
         | 
| 634 | 
            +
                    # ======================== Training ================================
         | 
| 635 | 
            +
                    train_start = time.time()
         | 
| 636 | 
            +
             | 
| 637 | 
            +
                    # Create sampling rng
         | 
| 638 | 
            +
                    rng, input_rng = jax.random.split(rng)
         | 
| 639 | 
            +
             | 
| 640 | 
            +
                    # Generate an epoch by shuffling sampling indices from the train dataset
         | 
| 641 | 
            +
                    train_loader = data_loader(input_rng, train_dataset, train_batch_size, shuffle=True)
         | 
| 642 | 
            +
                    steps_per_epoch = len(train_dataset) // train_batch_size
         | 
| 643 | 
            +
                    # train
         | 
| 644 | 
            +
                    for step in tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False):
         | 
| 645 | 
            +
                        batch = next(train_loader)
         | 
| 646 | 
            +
                        state, train_metric = p_train_step(state, batch)
         | 
| 647 | 
            +
                        train_metrics.append(train_metric)
         | 
| 648 | 
            +
             | 
| 649 | 
            +
                        cur_step = epoch * (len(train_dataset) // train_batch_size) + step
         | 
| 650 | 
            +
             | 
| 651 | 
            +
                        if cur_step % training_args.logging_steps == 0 and cur_step > 0:
         | 
| 652 | 
            +
                            # Save metrics
         | 
| 653 | 
            +
                            train_metric = unreplicate(train_metric)
         | 
| 654 | 
            +
                            train_time += time.time() - train_start
         | 
| 655 | 
            +
                            if has_tensorboard and jax.process_index() == 0:
         | 
| 656 | 
            +
                                write_train_metric(summary_writer, train_metrics, train_time, cur_step)
         | 
| 657 | 
            +
             | 
| 658 | 
            +
                            epochs.write(
         | 
| 659 | 
            +
                                f"Step... ({cur_step} | Loss: {train_metric['loss'].mean()}, Learning Rate: {train_metric['learning_rate'].mean()})"
         | 
| 660 | 
            +
                            )
         | 
| 661 | 
            +
             | 
| 662 | 
            +
                            train_metrics = []
         | 
| 663 | 
            +
             | 
| 664 | 
            +
                        if cur_step % training_args.eval_steps == 0 and cur_step > 0:
         | 
| 665 | 
            +
                            # ======================== Evaluating ==============================
         | 
| 666 | 
            +
                            eval_metrics = []
         | 
| 667 | 
            +
                            eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size)
         | 
| 668 | 
            +
                            eval_steps = len(eval_dataset) // eval_batch_size
         | 
| 669 | 
            +
                            for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False):
         | 
| 670 | 
            +
                                # Model forward
         | 
| 671 | 
            +
                                batch = next(eval_loader)
         | 
| 672 | 
            +
                                metrics = p_eval_step(state.params, state.dropout_rng, batch)
         | 
| 673 | 
            +
                                eval_metrics.append(metrics)
         | 
| 674 | 
            +
             | 
| 675 | 
            +
                            # normalize eval metrics
         | 
| 676 | 
            +
                            eval_metrics = get_metrics(eval_metrics)
         | 
| 677 | 
            +
                            eval_metrics = jax.tree_map(jnp.mean, eval_metrics)
         | 
| 678 | 
            +
             | 
| 679 | 
            +
                            try:
         | 
| 680 | 
            +
                                eval_metrics["perplexity"] = math.exp(eval_metrics["loss"])
         | 
| 681 | 
            +
                            except OverflowError:
         | 
| 682 | 
            +
                                eval_metrics["perplexity"] = float("inf")
         | 
| 683 | 
            +
             | 
| 684 | 
            +
                            # Print metrics and update progress bar
         | 
| 685 | 
            +
                            desc = f"Step... ({cur_step} | Eval Loss: {eval_metrics['loss']} | Eval Perplexity: {eval_metrics['perplexity']})"
         | 
| 686 | 
            +
                            epochs.write(desc)
         | 
| 687 | 
            +
                            epochs.desc = desc
         | 
| 688 | 
            +
             | 
| 689 | 
            +
                            # Save metrics
         | 
| 690 | 
            +
                            if has_tensorboard and jax.process_index() == 0:
         | 
| 691 | 
            +
                                cur_step = epoch * (len(train_dataset) // train_batch_size)
         | 
| 692 | 
            +
                                write_eval_metric(summary_writer, eval_metrics, cur_step)
         | 
| 693 | 
            +
             | 
| 694 | 
            +
                        if cur_step % training_args.save_steps == 0 and cur_step > 0:
         | 
| 695 | 
            +
                            # save checkpoint after each epoch and push checkpoint to the hub
         | 
| 696 | 
            +
                            if jax.process_index() == 0:
         | 
| 697 | 
            +
                                params = jax.device_get(unreplicate(state.params))
         | 
| 698 | 
            +
                                model.save_pretrained(
         | 
| 699 | 
            +
                                    training_args.output_dir,
         | 
| 700 | 
            +
                                    params=params,
         | 
| 701 | 
            +
                                    push_to_hub=training_args.push_to_hub,
         | 
| 702 | 
            +
                                    commit_message=f"Saving weights and logs of step {cur_step}",
         | 
| 703 | 
            +
                                )
         | 
| 704 | 
            +
             | 
| 705 | 
            +
             | 
| 706 | 
            +
            if __name__ == "__main__":
         | 
| 707 | 
            +
                main()
         | 

