Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- pt
|
5 |
+
- vmw
|
6 |
+
datasets:
|
7 |
+
- LIACC/Emakhuwa-Portuguese-News-MT
|
8 |
+
base_model:
|
9 |
+
- facebook/nllb-200-distilled-600M
|
10 |
+
pipeline_tag: translation
|
11 |
+
---
|
12 |
+
|
13 |
+
# CTranslate2 NLLB-200 Translation Example
|
14 |
+
|
15 |
+
This guide demonstrates how to use NLLB-finetuned model for bilingual translation between Portuguese (`por_Latn`) and a target language (`vmw_Latn`).
|
16 |
+
|
17 |
+
## Prerequisites
|
18 |
+
|
19 |
+
- Install required packages:
|
20 |
+
```bash
|
21 |
+
pip install transformers torch
|
22 |
+
```
|
23 |
+
|
24 |
+
## Inference
|
25 |
+
```python
|
26 |
+
from transformers import AutoModelForSeq2SeqLM, NllbTokenizer, AutoTokenizer
|
27 |
+
import torch
|
28 |
+
|
29 |
+
src_lang="por_Latn"
|
30 |
+
tgt_lang="vmw_Latn"
|
31 |
+
text="Olá mundo das língua!"
|
32 |
+
|
33 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
34 |
+
|
35 |
+
model_name="felerminoali/nllb_bilingual_pt-vmw_65k"
|
36 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device)
|
37 |
+
tokenizer = NllbTokenizer.from_pretrained(model_name)
|
38 |
+
|
39 |
+
tokenizer.src_lang = src_lang
|
40 |
+
tokenizer.tgt_lang = tgt_lang
|
41 |
+
|
42 |
+
inputs = tokenizer(
|
43 |
+
text, return_tensors='pt', padding=True, truncation=True,
|
44 |
+
max_length=1024
|
45 |
+
)
|
46 |
+
model.eval() # turn off training mode
|
47 |
+
result = model.generate(
|
48 |
+
**inputs.to(model.device),
|
49 |
+
forced_bos_token_id=tokenizer.convert_tokens_to_ids(tgt_lang)
|
50 |
+
)
|
51 |
+
|
52 |
+
print(tokenizer.batch_decode(result, skip_special_tokens=True)[0])
|
53 |
+
|
54 |
+
```
|