--- library_name: transformers license: cc-by-nc-4.0 base_model: lcampillos/roberta-es-clinical-trials-ner tags: - generated_from_trainer metrics: - accuracy - recall - precision - f1 model-index: - name: roberta-es-clinical-trials-ner-fd-text_cl results: [] --- # roberta-es-clinical-trials-ner-fd-text_cl This model is a fine-tuned version of [lcampillos/roberta-es-clinical-trials-ner](https://huggingface.co/lcampillos/roberta-es-clinical-trials-ner) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0955 - Accuracy: 0.8961 - Recall: 0.9353 - Precision: 0.8926 - F1: 0.9134 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 231 | 0.2599 | 0.9107 | 0.9273 | 0.9209 | 0.9241 | | No log | 2.0 | 462 | 0.4050 | 0.9008 | 0.9482 | 0.8897 | 0.9180 | | 0.1696 | 3.0 | 693 | 0.5082 | 0.8944 | 0.9412 | 0.8857 | 0.9126 | | 0.1696 | 4.0 | 924 | 0.7025 | 0.8821 | 0.9323 | 0.8748 | 0.9026 | | 0.0363 | 5.0 | 1155 | 0.6880 | 0.9026 | 0.9432 | 0.8959 | 0.9190 | | 0.0363 | 6.0 | 1386 | 0.6909 | 0.9096 | 0.9263 | 0.9199 | 0.9231 | | 0.0051 | 7.0 | 1617 | 0.8435 | 0.8938 | 0.9462 | 0.8813 | 0.9126 | | 0.0051 | 8.0 | 1848 | 0.9259 | 0.8891 | 0.9452 | 0.8755 | 0.9090 | | 0.0085 | 9.0 | 2079 | 0.7661 | 0.9043 | 0.9253 | 0.9126 | 0.9189 | | 0.0085 | 10.0 | 2310 | 0.8466 | 0.8915 | 0.9452 | 0.8787 | 0.9107 | | 0.0063 | 11.0 | 2541 | 0.8288 | 0.9043 | 0.9183 | 0.9183 | 0.9183 | | 0.0063 | 12.0 | 2772 | 0.9942 | 0.8827 | 0.9472 | 0.8653 | 0.9044 | | 0.009 | 13.0 | 3003 | 0.5731 | 0.9294 | 0.9223 | 0.9556 | 0.9387 | | 0.009 | 14.0 | 3234 | 0.7689 | 0.9084 | 0.9402 | 0.9068 | 0.9232 | | 0.009 | 15.0 | 3465 | 1.2144 | 0.8687 | 0.9532 | 0.8432 | 0.8948 | | 0.0017 | 16.0 | 3696 | 0.9313 | 0.8956 | 0.9283 | 0.8970 | 0.9124 | | 0.0017 | 17.0 | 3927 | 0.8994 | 0.9049 | 0.9213 | 0.9167 | 0.9190 | | 0.001 | 18.0 | 4158 | 0.9995 | 0.8956 | 0.9323 | 0.8940 | 0.9127 | | 0.001 | 19.0 | 4389 | 1.0237 | 0.8932 | 0.9333 | 0.8898 | 0.9110 | | 0.0007 | 20.0 | 4620 | 1.0355 | 0.8938 | 0.9373 | 0.8877 | 0.9118 | | 0.0007 | 21.0 | 4851 | 1.0372 | 0.8944 | 0.9343 | 0.8908 | 0.9120 | | 0.0006 | 22.0 | 5082 | 1.0451 | 0.8944 | 0.9343 | 0.8908 | 0.9120 | | 0.0006 | 23.0 | 5313 | 1.0461 | 0.8944 | 0.9343 | 0.8908 | 0.9120 | | 0.0004 | 24.0 | 5544 | 1.0582 | 0.8932 | 0.9343 | 0.8891 | 0.9111 | | 0.0004 | 25.0 | 5775 | 1.0680 | 0.8944 | 0.9373 | 0.8886 | 0.9123 | | 0.0008 | 26.0 | 6006 | 1.0828 | 0.8921 | 0.9343 | 0.8874 | 0.9102 | | 0.0008 | 27.0 | 6237 | 1.0875 | 0.8932 | 0.9442 | 0.8819 | 0.9120 | | 0.0008 | 28.0 | 6468 | 1.0394 | 0.8961 | 0.9223 | 0.9025 | 0.9123 | | 0.0022 | 29.0 | 6699 | 1.0938 | 0.8961 | 0.9353 | 0.8926 | 0.9134 | | 0.0022 | 30.0 | 6930 | 1.0955 | 0.8961 | 0.9353 | 0.8926 | 0.9134 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1