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Abstract

Large language models (LLMs) have shown remarkable success across many domains, yet
their integration into cybersecurity applications remains limited due to a lack of general-
purpose cybersecurity data, representational complexity, and safety and regulatory concerns.
To address this gap, we previously introduced Foundation-Sec-8B, a cybersecurity-focused
LLM suitable for fine-tuning on downstream tasks. That model, however, was not designed
for chat-style interactions or instruction-following. In this report, we release Foundation-Sec-
8B-Instruct: a model specifically trained for general-purpose cybersecurity dialogue. Built
on Foundation-Sec-8B, it combines domain-specific knowledge with instruction-following,
conversational capabilities, and alignment with human preferences to produce high-quality,
relevant responses. Comprehensive evaluations show that Foundation-Sec-8B-Instruct outper-
forms Llama 3.1-8B-Instruct on a range of cybersecurity tasks while matching its instruction-
following performance. It is also competitive with GPT-40-mini on cyber threat intelligence
and instruction-following tasks. We envision Foundation-Sec-8B-Instruct becoming an in-
dispensable assistant in the daily workflows of cybersecurity professionals. We release the
model publicy at https://huggingface.co/fdtn-ai/Foundation-Sec-8B-Instruct.

1. Introduction

Frontier large language models (LLMs) are driving innovation across a swath of domains. Tools like
ChatGPT [49] have seen widespread use, assisting users in tasks ranging from creative writing to techni-
cal problem-solving. Specialized models have also shown promise in fields such as medicine [9, 57], law
[13, 14], and code generation [53]. Nevertheless, integration into mainstream cybersecurity workflows
remains limited. Practitioners still face a range of practical challenges while commercial models often
impose strict safety guardrails that constrain their practical utility for security applications [77].



https://huggingface.co/fdtn-ai/Foundation-Sec-8B-Instruct

Llama-3.1-8B-Instruct
Foundation-Sec-8B-Instruct
801 s
gpt-40-mini
60
g
1
3
» 40
20
0 . . . . .
CTIBench-RCM  CTIBench-MCQA  CTIBench-VSP IF-Eval Alpaca Eval 2

Figure 1 | Overview of core results on the selected benchmarks. Foundation-Sec-8B-Instruct matches or
outperforms Llama 3.1-8B-Instruct and GPT-40-mini in cyber threat intelligence tasks, and surpasses
Llama 3.1-8B-Instruct on instruction-following tasks.

Lack of data, alignment gaps, and field breadth are key challenges to practical deployment of
cybersecurity-specific LLMs. The scarcity of clean, high-quality, public datasets hinders the development
of models with robust cybersecurity capabilities [43]. Interpretability research on LLM representations
is still evolving, leaving models vulnerable to hallucinations [67] and distribution shifts [25]. The
broad scope of cybersecurity topics and tasks—from phishing and malware detection to cryptographic
operations—further complicates efforts to build a single, general-purpose model. As a result, the
ecosystem remains fragmented and dominated by narrow, task-specific tools [45, 72, 78].

To address these challenges, we previously introduced Foundation-Sec-8B, a cybersecurity-specialized
LLM based on Llama 3.1-8B [36]. Through continual pre-training on a large cybersecurity corpus, the
model is infused with deep domain knowledge and serves as a foundation for general cybersecurity
tasks. However, as a base model, it is not trained to interact with users, follow instructions in natural
language, or align responses to human preferences.

In this work, we present Foundation-Sec-8B-Instruct, a cybersecurity chat model built on Foundation-
Sec-8B with instruction-following and conversational capabilities. Base models alone typically require
task-specific fine-tuning [28] or carefully designed in-context examples [6] before they can provide
meaningful interactions. Foundation-Sec-8B-Instruct makes the knowledge embedded in Foundation-Sec-
8B readily accessible—users can query the model directly and engage in interactive dialogue without any
prerequisite setup. By combining domain expertise with instruction-tuning and preference alignment,
Foundation-Sec-8B-Instruct enables a broad range of interactions and real-world workflows.

We provide comprehensive evaluations across diverse benchmarks to assess our model in both
cybersecurity knowledge and instruction-following ability. Results show that Foundation-Sec-8B-
Instruct outperforms Llama 3.1-8B-Instruct on cyber threat intelligence (CTI) benchmarks and remains
competitive with GPT-40-mini on both cybersecurity and general instruction-following tasks (see Figure
1). We also include a safety analysis of the model’s vulnerability to malicious prompts. Our goal
is for Foundation-Sec-8B-Instruct to become a trusted daily assistant for cybersecurity professionals
worldwide.



2. Related Work

We examine prior work on instruction-tuned, cybersecurity-specialized models and relevant post-
training approaches. While much of the literature has focused on secure code generation or vulnerability
detection [36], our goal is to align a general-purpose LLM with core cybersecurity tasks. We aim to
enable broader applicability of the model across diverse use cases through instruction-following training.
For a comprehensive overview of cybersecurity-focused language models, we refer readers to existing
surveys [77].

2.1. Instruction-Tuned Cybersecurity LLMs

To our knowledge, only a few instruction-following models have been developed for general cybersecu-
rity tasks. We include them as baselines in our evaluations.

DeepHat-v1 [15] A family of instruction-tuned cybersecurity models based on Llama 3.1 and Qwen-
2.5. DeepHat is intentionally uncensored and optimized for offensive security applications, including
red teaming and exploit development.

Primus [75] An instruction-tuned cybersecurity LLM built on Llama 3.1-8B, trained on a curated
2 billion-token corpus sourced from MITRE ATT&CK, Wikipedia, vendor reports, threat intelligence
feeds, and manually collected CTI data.

LilyCybersecurity [56] A cybersecurity assistant based on Mistral-7B [32], fine-tuned with supervi-
sion on 22,000 hand-crafted conversations related to cybersecurity and hacking.

2.2. Post-Training

Modern post-training recipes improve model abilities in reasoning, math, coding, and tool use, while
also adapting next-token prediction to better follow user instructions [50, 51]. Recent approaches
have replaced complex multi-stage reinforcement learning (RL) algorithms, such as Proximal Policy
Optimization (PPO) [55], with simpler methods like Direct Preference Optimization (DPO) [52].

As of this writing, and to our knowledge, there are no high-quality cybersecurity datasets or
benchmarks for evaluating alignment with human preferences. In contrast, fields like medicine and law
have emphasized the need to assess model outputs against domain-specific human judgments [24, 57].

Most existing cybersecurity benchmarks, however, focus on knowledge recall rather than alignment
with human preferences. They tend to emphasize multiple-choice questions [39, 41, 66] or narrowly
scoped tasks like classification (e.g., vulnerability detection), named entity recognition (NER), and
summarization [16, 76]. Models evaluated only on such benchmarks leave open the question of whether
they are suitable for broader, real-world use [75]. In contrast, our model not only performs well on
cybersecurity knowledge recall tasks but also shows general alignment with human preferences, making
it better suited for practical applications.

3. Benchmarks

We evaluate Foundation-Sec-8B-Instruct on both cybersecurity-specific and general post-training bench-
marks. We evaluate the model on both cybersecurity-specific and general post-training benchmarks,



Benchmark Domain

CTIBench-MCQA  cybersecurity
CTIBench-RCM cybersecurity
CTIBench-VSP cybersecurity
CyberMetric-500  cybersecurity

SecBench cybersecurity
SecEval cybersecurity
MMLU knowledge

IFEval instruction following
GSMSK math

MATH math

HumanEval code

BigBenchHard reasoning
AlpacaEval 2 human preference

Table 1 | Benchmarks used for our model evaluations and comparisons.

chosen to assess domain knowledge, instruction-following, practical utility, and reasoning skills. Table 1
summarizes all benchmarks used in our evaluation.

3.1. Security Benchmarks

Our principal assessment focuses on the model’s cybersecurity knowledge. We use a broad set of
benchmarks that cover security governance and compliance, technical and infrastructure protection,
threat detection and incident response, and emerging risks. Most benchmarks are formatted as multiple-
choice question-answering (MCQA) tasks (i.e., CTIBench-MCQ, CyberMetric, SecBench, SecEval, MMLU-
Computer Security), while others (i.e., CTIBench-RCM and CTIBench-VSP) use custom short-answer
formats. A full list and detailed descriptions of all security benchmarks are provided in Appendix A.

These benchmarks also evaluate general instruction-following capabilities within a cybersecurity
context. Each security benchmark can be framed as a cybersecurity instruction-following task with
verifiable answers. We use performance on these tasks as a proxy for the model’s instruction-following
ability in the security domain. Sample prompts and answers are provided in Appendix A.

3.2. Post-Training Evaluations

We evaluate our model on several general-purpose benchmarks, including Massive Multitask Language
Understanding (MMLU) [26], IFEval [80], GSM8K [12], MATH [27], HumanFEval [8], AlpacaEval 2 [18],
and BigBenchHard [61]. These benchmarks assess instruction-following, coding, math, and reasoning
capabilities. Detailed descriptions are provided in Appendix B. We use the Open Language Model
Evaluation System (OLMES) [23] for all general benchmarks except MMLU, for which we use our own
evaluation framework.

3.3. Cybersecurity Topics in Evaluations

To better understand the topic distribution of the cybersecurity benchmarks, we analyzed sub-topic
coverage using our own taxonomy; see Appendix C for details.

The analysis in Figure 2 shows a skewed distribution: areas like application security are heavily



overrepresented, while other areas, such as security operations and cloud security, are underrepresented.
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Figure 2 | Distribution of topics in common cybersecurity evaluation benchmarks. Application security is
heavily overrepresented, particularly in CTIBench tasks, as well as network security and cloud security.

4. Post-Training Dataset Analysis

4.1. Datasets

In this section we study distribution of cybersecurity data in common open-sourced post-training
datasets. Specifically we study: Tiilu 3 [37], Tilu 2 [31], Alpaca [62], Open Platypus [38], WizardLM
Evol Instruct (70k) [70], OpenOrca [40], Llama-Nemotron Post-Training Dataset (non-reasoning, chat,
and safety components only) [5], Primus-Instruct and Primus-Reasoning [75].

4.2. Analysis Of Cybersecurity Data In Post-Training Datasets

As part of the data curation process, we studied the presence and makeup of cybersecurity data in the
datasets listed in Section 4.1 (excluding Primus-Instruct and Primus-Reasoning as they are cybersecurity-
oriented datasets).

We employ a two-stage classification system to identify and categorize cybersecurity-focused
prompts according to our in-house cybersecurity taxonomy described in Appendix C. The first stage
consists of keyword and regex-based pattern matching rules derived from this taxonomy. For additional
details on the keyword-based classification stage, see Appendix D. The second stage applies a fine-tuned
ModernBERT [69] model to perform multi-class classification in alignment with our taxonomy.

Table 2 summarizes our findings. Several datasets exhibit minimal security content with estimated
ranges below 1%, but the WizardLM Evol Instruct, Nemotron SFT Chat, and Tilu datasets likely have
non-trivial proportions of cybersecurity data. More comprehensive statistics are provided in Appendix D.



Source Estimated Count Estimated Percentage

OpenOrca 8555 0.20%
Tulu 3 SFT Mixture 13083 1.39%
Tilu 2 SFT Mixture 4309 1.32%
WizardLM Evol Instruct 1198 1.71%
Nemotron SFT Chat 711 1.79%
Nemotron SFT Safety 170 0.68%
Alpaca 168 0.32%
Open Platypus 100 0.32%

Table 2 | Estimated count and percentage of cybersecurity-focused prompts in open-sourced post-training
datasets.
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Figure 3 | Distribution of cybersecurity topics within post-training datasets.

Figure 3 shows the breakdown of each dataset by cybersecurity category as determined by our
classification model. These post-training datasets demonstrate much greater coverage and balanced
distributions of categories than the evaluation datasets in Figure 2.

This analysis may be of interest to the broader cybersecurity community, offering insight into the
composition of cybersecurity data in open-source post-training datasets.

4.3. Understanding Contamination on Post-Training Datasets

Large-scale post-training datasets are often aggregated from diverse and minimally filtered sources,
making them prone to unintentional inclusion of benchmark content [17, 71]. Such contamination can
artificially inflate reported performance, distort comparative evaluations, and undermine our ability
to assess a model’s true generalization capabilities [20]. In this analysis, we aim to systematically
characterize the extent and nature of contamination across commonly used post-training datasets.
Understanding where and how benchmark leakage occurs enables more informed decisions about



Tiilu 3 SFT Primus-Reasoning Alpaca

Benchmark EM NG ES LLM-ES EM NG ES LLM-ES EM NG ES LLM-ES

CTIBench-MCQA 0.00 0.00 4.12 0.1 33.40 32.04 13.48 10.2 0.00 0.00 3.44 0.1
CTIBench-RCM  0.00 0.00 1.70 0.00 83.10 78.80 91.50 74.9 0.00 0.00 0.00 0.00
CTIBench-VSP 0.00 0.00 3.70 0.00 83.10 78.20 78.40 72.6 0.00 0.00 0.10 0.00

CyberMetric-500 0.00 0.00 28.00 0.6 0.00 0.00 0.00 0.00 0.00 0.00 33.20 25

Table 3 | Contamination levels across selected post-training datasets relative to benchmark sizes (per-
centages, rounded). EM = Exact Match, NG = N-Gram Overlap, ES = Embedding Similarity, and LLM-ES
= LLM-verified Embedding Similarity. Light red cells indicate values > 0% but < 2%; red cells indicate

values > 2% but < 50%; |dark red cells indicate values > 50%.

dataset selection for model training and guides the design of decontamination pipelines that preserve
benchmark integrity.

Building on prior work [17, 37, 71, 74, 81], we implement a layered framework comprising three
components: an n-gram-based search to detect verbatim matches, an embedding-based cosine similarity
filter to identify semantically similar phrases and an LLM-as-a-Judge quality filter to improve the
detection of paraphrases. These components provide a robust mechanism for detecting contamination,
though results remain sensitive to hyperparameter choices.

We apply this framework to several widely used post-training datasets and summarize their over-
lap with security-focused benchmarks in Table 3. As was reported in its dataset report [75], the
Primus-Reasoning dataset was constructed using cybersecurity reasoning tasks from CTIBench. Our
contamination detection correctly identifies this contamination with all three components, particularly
in CTIBench-RCM (79-91% detected) and CTIBench-VSP (72-83% detected). This validates that our
approach correctly detects known contamination and highlights the risk posed by training on datasets
without conducting contamination audits, as we evaluate on both of these benchmarks. The contamina-
tion of CTIBench datasets is low (<5%) in other datasets, while modest levels of contamination from
CyberMetric-500 are found in Tiilu 3 and Alpaca.

Notably embedding similarity dominates contamination detection in these datasets. However,
embedding similarity between corpora of security data tends to be high by default, which can inflate
contamination estimates. We attribute this to several factors: embedding similarity reflects semantically
learned representations, and the relatively limited presence of cybersecurity data in the pre-training of
these embedding models may reduce their ability to capture fine-grained distinctions in this domain
[4, 46]; moreover, similar to known issues with embedding metrics like BERTScore, these embeddings
may conflate shared domain-specific vocabulary with true content overlap [47, 60]. To reduce false
positives and improve robustness, we tuned to a higher similarity threshold (e.g., cosine 0.75-0.8) and
validated a subset of matches using an LLM-as-a-judge approach. A detailed breakdown of our choices
and representative examples at different similarity levels can be found in Appendix E.2.



5. Training

5.1. Cybersecurity Data Mix

Prior work has suggested that adding new knowledge during fine-tuning increases the likelihood of
hallucinations [21, 44]. We adopt the stance that post-training should not attempt to impart novel
cybersecurity knowledge. Instead, we rely primarily on pre-training of our base model to provide this
knowledge. We further observed that including large amounts of cybersecurity data in our post-training
datasets tends to dilute the effectiveness of our knowledge-based cybersecurity evaluations, making it
difficult to assess generalization and compare between model candidates.

5.2. Supervised Fine-tuning and Direct Preference Optimization

Supervised fine-tuning is utilized to hone core instruction-following skills in the model. In contrast,
RL techniques are primarily used to improve on instruction-following and alignment with human
preferences. Starting from Foundation-Sec-8B, we apply a combination of SFT and RL techniques to
develop our final instruction-tuned model.

Similar to other post-training procedures, we also rely on high quality synthetic data [2, 22, 73].
We built a synthetic data generation pipeline with a focus on refinement through rejection sampling,
difficulty grading, and automated verification checks. Our final model also went through several rounds
of human preference testing that revealed insights which were then used to bolster our preference
tuning data.

Consistent with prior work, we note that data diversity during post-training drives model general-
ization [11, 68, 79]. In a similar vein, we observe that data diversity is also a key driver of knowledge
retention. Prior work showed that while minor degradation is expected during post-training, the sever-
ity can be mitigated by increasing the diversity and balance of the post-training dataset [22, 48]. As
described in Section 6.5, Foundation-Sec-8B-Instruct only shows mild degradation in knowledge tasks
compared to Foundation-Sec-8B.

6. Results

We evaluate both the baseline models and Foundation-Sec-8B-Instruct against security benchmarks
described in Section 3.1 and against general evaluations described in Section 3.2. On security benchmarks,
we ran 10 trials at temperature 0.3 and we report the mean accuracy of the model on each benchmark
with one standard deviation in Table 4. On general post-training benchmarks, we stick to standard
evaluation settings accepted by the community and implemented by OLMES [23]. We present these
results in Table 5. More details are presented in Appendix B.

6.1. Baselines

We include the following cybersecurity LLMs as baselines for comparison: DeepHat-v1-7B (formerly
WhiteRabbitNeo) [15] , Primus-base, and Primus-merged [75]. We also include comparisons to models
from the Llama 3.1 [22], Gemma-3 [63] and Qwen-2.5 families [73] as well as GPT-40-mini! [29].

"We use the 07.18.2024 checkpoint for GPT-40-mini.



6.2. Security Benchmark Performance

Foundation-Sec-8B-Instruct achieves state-of-the-art performance on CTIBench-RCM beating larger
models including GPT-40-mini and Llama 3.1-70B-Instruct. When considering performance error
bars (within 1 standard deviation), the model is consistently among the top performers on CTIBench-
MCQA. This showcases Foundation-Sec-8B-Instruct’s strong performance on CTI tasks, mirroring
the performance of Foundation-Sec-8B. The model is competitive on CyberMetric-500, SecBench and
SecEval.

6.3. General Post-Training Performance

Foundation-Sec-8B-Instruct is best-in-class in instruction following ability and human preferred
output among cybersecurity LLMs. On AlpacaEval 2, the next-best cybersecurity model has less than
half the win-rate while in IFEval the closest model is 8 points behind. The model also outperforms Llama
3.1-8B-Instruct by 11 points and 2 points respectively.

In grade school math, mathematical reasoning, and coding, Foundation-Sec-8B-Instruct rivals
peer models and is within 3 percentage points of Llama 3.1-8B-Instruct, demonstraing comparable
performance. Finally, the performance of Foundation-Sec-8B-Instruct with respect to Llama 3.1-8B-
Instruct on MMLU hints at a narrow base of knowledge, while BigBenchHard suggests potential for
further development in reasoning capabilities.

Overall Foundation-Sec-8B-Instruct’s strong instruction following ability sets it up for practical
deployment in cybersecurity contexts.

Model CTIBench-RCM CTIBench-MCQA CTIBench-VSP CyberMetric-500 SecBench SecEval

Gemma-34B-Instruct 0.382+0.006 0.578+0.001 0.775+0.001 0.768+0.002 0.615+0.002 0.813+0.001
Qwen-2.5-7B-Instruct 0.572+0.008 0.644+0.001 0.804+0.001 0.859+0.002 0.767+0.003 0.870+0.001
DeepHat-v1-7B 0.664+0.007 0.645+0.006 0.808+0.003 0.869+0.007 0.716+0.004 0.880+0.003
Llama 3.1-8B-Instruct 0.558+0.007 0.617+0.004 0.815+0.002 0.847+0.005 0.723+0.010 0.855+0.003
Primus-base 0.639+0.006 0.652+0.003 0.754+0.008 0.854+0.008 0.713+0.005 0.841+0.006
Primus-merged 0.666+0.007 0.643+0.004 0.790+0.003 0.856+0.004 0.721+0.009 0.849+0.002
Gemma-312B-Instruct 0.361+0.007 0.629+0.001 0.867+0.001 0.865+0.001 0.749+0.001 0.868+0.001
Gemma-327B-Instruct 0.549+0.006 0.653+0.001 0.821+0.000 0.870+0.002 0.780+0.002 0.896+0.000
Llama 3.1-70B-Instruct 0.623+0.005 0.695+0.002 0.840+0.001 0.930+0.005 0.839+0.003 0.900-+0.002
GPT-40-mini 0.655+0.005 0.672+0.003 0.792+0.004 0.889+0.003 0.803+0.003 0.889+0.001

. 0.692+0.005 0.644+0.003 0.802+0.004 0.830+0.005 0.685+0.006 0.833+0.003
Foundation-Sec-8B-Instruct

(124.03%) (14.40%) (1-1.67%) (1-2.01%) (1-521%)  (1-2.50%)

Table 4 | Performance on the selected cybersecurity benchmarks (temperature 0.3). Reported performance
differences are relative to Llama 3.1-8B-Instruct. For CTIBench-RCM, CTIBench-MCQA, CyberMetric-
500, SecBench, and SecEval we report the average accuracy over 10 trials + one standard deviation.
For CTIBench-VSP we report the average CVSS score (see Appendix A.1) over 10 trials + one standard
deviation.



Model MMLU BBH GSM8k AlpacaEval2 MATH IFEval HumanEval

Gemma-34B-Instruct 0.582 0.709 0.780 42.465 0.604 0.773 0.757
Qwen-2.5-7B-Instruct 0.717 0.709 0.842 28.983 0.699 0.758 0.927
DeepHat-v1-7B 0.664 0.689 0.828 13.738 0.462 0.721 0.950
Llama 3.1-8B-Instruct 0.679 0.725 0.835 24.477 0.425 0.791 0.864
Primus-base 0.650 0.698 0.783 11.454 0.327 0.686 0.856
Primus-merged 0.660 0.718 0.805 16.082 0.373 0.738 0.874
Gemma-312B-Instruct 0.723 0.820 0.870 52.340 0.732 0.852 0.869
Gemma-327B-Instruct 0.767 0.835 0.907 64.044 0.758 0.834 0.893
Llama 3.1-70B-Instruct 0.810 0.831 0.942 33.140 0.560 0.878 0.951
GPT-40-mini 0.804 0.777 0.832 52.720 0.679 0.834 0.929

0.602 0.677 0.817 35.453 0.411 0.811 0.843

Foundation-Sec-8B-Instruct
(1-11.31%) (1-6.57%) (1-2.09%)  (144.84%)  (1-3.36%) (12.57%) (1-2.44%)

Table 5 | Performance on the selected post-training benchmarks. Reported performance differences are
relative to Llama 3.1-8B-Instruct. Evaluation parameters and metrics described in Appendix B.

6.4. Persona Adaptation

Cybersecurity workflows involve distinct practitioner roles such as SOC analysts, red teamers, and threat
intelligence specialists, each requiring domain-specific language and task framing. To assess the model’s
ability to emulate such contexts, we evaluate its persona adaptation capabilities through PersonaGym
[54]—a standardized benchmark for assessing LLMs on multi-turn, persona-driven conversations. We
evaluate our model on a subset of the PersonaGym test split (50 of the original 200 personas). As
shown in Table 6, Foundation-Sec-8B-Instruct demonstrates strong alignment with assigned personas
without requiring dedicated personalization fine-tuning. Additional evaluation details are provided in
Appendix F.

Action Expected Linguistic  persona  Toxicity persona
Model Justification Actions Habits Consistency Control Score
Llama 2-8B 3.96 3.87 3.77 4.12 4.18 3.98
GPT 3.5 4.31 4.28 3.63 4.70 4.96 4.38
Llama 2-70B 4.44 4.32 3.85 4.67 4.68 4.39
Llama 3-8B 4.55 4.43 3.97 4.77 4.74 4.49
Claude 3 Haiku 2.47 4.28 3.04 3.47 4.94 3.64
Claude 3.5 Sonnet 4.52 4.37 3.98 4.81 4.88 4.51
Foundation-Sec-8B-Instruct 44 4.6 3.95 4.95 5.0 4.58

Table 6 | PersonaGym Results. Scores range from 1 (lowest) to 5 (highest). Reported results for all models
except ours are taken from [54].
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6.5. Comparison to Foundation-Sec-8B

To showcase the retention of cybersecurity knowledge during post-training, we present a head-to-head
comparison between Foundation-Sec-8B-Instruct and Foundation-Sec-8B on cybersecurity evaluations.
Due to the inability of Foundation-Sec-8B to follow precise instructions, we use 5 shot prompting. We
compare the models on CyberMetric-500, CTIBench-MCQA, and SecBench.

As noted in [36], instruction-tuning affects next-token prediction capabilities of models for few-
shot settings, often resulting in verbose responses that do not follow the terse templates given by the
few-shot examples. This complicates the direct comparison between base and instruction-tuned models
using few-shot evaluations. This is an issue particularly for CTIBench-RCM due to its complexity and
short-answer format. Therefor we exclude it from this analysis.

Figure 4 shows our results. We acknowledge that our measure of latent knowledge retention is
limited by the diversity in these evaluations and obscured by each model’s ability to follow instructions.
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Figure 4 | Comparison of Foundation-Sec-8B-Instruct to Foundation-Sec-8B on selected cybersecurity
metrics. The negligible differences in performance suggest minimal forgetting of cybersecurity knowl-
edge in the instruction-tuned model. Both models were 5-shot prompted and results averaged over 10
trials.

7. Safety Alignment

Foundation-Sec-8B-Instruct has not undergone dedicated safety alignment procedures beyond basic
instruction-tuning. However, we followed standard practices to provide a baseline level of alignment.
Because this is an instruction-tuned model as opposed to a base model, safety training is particularly
important, as the model is designed to follow user prompts and may do so in unsafe ways. The model has
not been explicitly trained for robustness against adversarial techniques, such as jailbreaking or prompt
injection, and no post-hoc safety filtering (e.g., moderation classifiers or rule-based sanitization) has
been applied to its outputs. As a result, the model may produce unfiltered or unsafe content, including

11



toxic, biased, or factually incorrect responses. We strongly recommend applying additional safety
layers, such as automated content filtering or LLM-based moderation systems, when deploying
or experimenting with this model.

To better understand the model’s risk profile and limitations despite the lack of explicit safety
alignment, we conducted an evaluation of its safety and robustness using HarmBench [42], a benchmark
framework designed for automated red teaming of LLMs. The model was evaluated on 400 representative
HarmBench prompts for simple toxicity and demonstrated satisfactory performance, rejecting or safely
responding to 92% of malicious examples across a broad range of risk categories.

To further mitigate safety risks, we recommend pairing the model with LlamaGuard [30], which
implements taxonomy-driven input-output filtering. When evaluated together, Foundation-Sec-8B-
Instruct and LlamaGuard rejected 99% of malicious test cases.

In order to provide users with a good experience when interacting with the model, we developed a
detailed system prompt for general user interaction. We tested this system prompt in internal testing and
found that it improved user satisfaction and safety. This system prompt is baked into the model’s chat
template but can be modified or overridden as needed. The system prompt is reproduced in Appendix G
and can be tailored to particular use cases.

99.25%
100 91.98%

807 72.43%

60

407

Queries Refused (%)

20t

Llama 3.1-8B-Instruct
Foundation-Sec-8B-Instruct
LlamaGuard + Foundation-Sec-8B-Instruct

Figure 5 | Comparison of Llama 3.1-8B-Instruct, Foundation-Sec-8B-Instruct, and Foundation-Sec-8B-
Instruct protected by LlamaGuard [30] on malicious queries from HarmBench [42]. While Foundation-
Sec-8B-Instruct performs significantly better than Llama 3.1-8B-Instruct, applying LlamaGuard increases
the refusal rate on malicious requests to nearly 100%. Therefore we recommend deploying the model
with additional guardrails in production use cases.

8. Conclusion

We introduce Foundation-Sec-8B-Instruct, a best-in-class large language model (LLM) for general-
purpose cybersecurity dialogue, designed to support practitioners, students, and others across a wide
range of security tasks. Foundation-Sec-8B-Instruct outperforms Llama 3.1-8B-Instruct and GPT-40-mini
on CTIBench-RCM and ranks among the top performers in several other cybersecurity benchmarks
for its size. Beyond domain-specific tasks, it also delivers competitive results on general instruction-
following and human preference alignment benchmarks—showcasing its value as a practical model.
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Our results demonstrate that domain-adapted models can retain strong general-purpose capabilities
while excelling at specialized tasks. With the release of this model, we aim to meet the growing need for
cybersecurity-focused LLMs with robust zero-shot performance across diverse contexts. We believe
Foundation-Sec-8B-Instruct will help advance LLM integration in cybersecurity and be a daily driver for
many cybersecurity practitioners.
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A. Security Benchmarks

CTIBench [3] A benchmark designed to assess LLM performance in cyber threat intelligence (CTI)
applications. It targets practical, CTI-specific tasks and includes five sections. We focus on the following:
CTIBench-MCQA, CTIBench-RCM, and CTIBench-VSP.

CTIBench-Multiple Choice Questions (MCQA) A 2,500-question benchmark for multiple-choice
QA, drawing from CTI frameworks, regulations, and taxonomies such as NIST [34], GDPR [19], MITRE
ATT&CK [59], and CAPEC [7].

CTIBench-Root Cause Mapping (RCM) Evaluates a model’s ability to identify the root cause of
vulnerabilities by mapping CVE (Common Vulnerability Enumeration) [64] records and bug reports to
CWE (Common Weakness Enumeration) [10] entries.

CTIBench-Vulnerability Severity Prediction (VSP) Requires identifying the correct severity of
a vulnerability by mapping its description to a Common Vulnerability Scoring System (CVSS) vector
string [1]. The dataset contains 1,000 samples. While CVSS includes Base, Temporal, and Environmental
metric groups, this task focuses on the Base group, which reflects the vulnerability’s intrinsic properties.
The Base group includes eight metrics: Attack Vector (AV), Attack Complexity (AC), Privileges Required
(PR), User Interaction (UI), Scope (S), Confidentiality Impact (C), Integrity Impact (I), and Availability Impact
(A). This task demands a nuanced understanding of technical language and context, making it a strong
proxy for performance on downstream cybersecurity analytics tasks.

CyberMetric [65] An MCQA-format dataset created using GPT-3.5 with Retrieval-Augmented Gener-
ation (RAG) applied to a large corpus of security standards, research papers, RFCs, books, and other
publications. It was validated through over 200 hours of expert human review to ensure accuracy and
relevance. We report results on the 500-sample version of the dataset.

SecBench [33] A dataset containing MCQA and short-answer (SAQ) questions designed to assess
cybersecurity knowledge and logical reasoning. Unlike SecEval, CTIBench, and CyberMetric, a large
portion of SecBench questions were sourced from a Cybersecurity Question Design Contest, making the
benchmark more relevant and challenging. We use only the multiple-choice questions from the English
subset (595 questions).

SecEval [39] An MCQA dataset with over 2,000 samples spanning nine cybersecurity domains:
Software Security, Application Security, System Security, Web Security, Cryptography, Memory Safety,
Network Security, and PenTesting.

MMLU-Computer Security [26] The computer security subset of the MMLU (Measuring Massive
Multitask Language Understanding) benchmark [26]. It includes 116 questions covering topics such as
cryptography, malware, and fuzzing.

A.1. Evaluation Details

For evaluations on CTIBench-MCQA, CTIBench-RCM, CyberMetric, SecBench, and SecEval, we follow

the same approach used in our base model’s development. For more details, see [36, Appendix B.3].
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CTIBench-VSP Models are tasked with predicting the CVSS v3.1 vector for a given CVE description:

Linux Kernel Vulnerability

In the Linux kernel through 6.7.1, there is a use-after-free in
cec_queue_msg_fh, related to drivers/media/cec/core/cec-adap.c and
drivers/media/cec/core/cec-api.c.

We guide all models to compute the CVSS vector using the following instruction, which is a slightly
modified version of the original benchmark prompt:

CVSS Instructions

From the following CVE description, determine the CVSS v3.1 vector
string for each CVSS base metric: AV, AC, PR, UI, S, C, I, and A.
Valid options for each metric are as follows:

- *xAttack Vector (AV)=*x: Network (N), Adjacent (A), Local (L),
Physical (P)

- xxAttack Complexity (AC)**: Low (L), High (H)

- x*Privileges Required (PR)**: None (N), Low (L), High (H)

- *%xUser Interaction (UI)*x: None (N), Required (R)

- *xScope (S)**x: Unchanged (U), Changed (C)

- xxConfidentiality (C)x*: None (N), Low (L), High (H)

- xxIntegrity (I)#*x: None (N), Low (L), High (H)

- xxAvailability (A)#*x: None (N), Low (L), High (H)
Provide your answer as a CVSS v3.1 vector string. Ensure your final
answer contains only the CVSS v3 Vector String in the following
example format:
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

Each predicted CVSS vector is converted to a CVSS base score between 0.0 and 10.0, representing the
overall threat level. For the VSP benchmark, we use a metric derived from the mean absolute deviation
(MAD) of the base score, following Alam et al. [3], but normalize and invert it so that a perfect match

yields a score of 1.0:

MAD
CVSS_Score =1 — o

We report the CVSS_Score to simplify comparisons across benchmarks.
In contrast to the original CTIBench-VSP setup, which excluded malformed predictions that could
not be parsed as valid CVSS vectors, we assign them the maximum deviation of 10.0. Lastly, we set a

higher max_tokens = 1000, as models often explain their choices for each component before outputting
the final CVSS vector.

21



MCOQA prompt format

Given the following question and four candidate answers (A, B, C and
D), choose the best answer. Your response should be of the
following format: 'Answer: \$LETTER' (without quotes) where LETTER
is one of A, B, C, or D.

Three of the following are classic security properties; which one is
not?

Confidentiality

Availability

Correctness

o O ™ >

Integrity

\

Figure 6 | Zero-shot prompt format used with instruct-finetuned models for MCQA tasks.

CWE ID prompt format

Analyze the following CVE description and map it to the appropriate

CWE. Provide a brief justification for your choice. Ensure the last
line of your response contains only the CWE 1ID.

CVE Description: Tenda AX1803 v1.0.0.1 contains a stack overflow via
the iptv.city.vlan parameter in the function getIptvInfo.

Figure 7 | Zero-shot prompt format used with instruct-finetuned models for the CWE ID mapping task,
i.e., CTIBench-RCM.

B. General Capability Benchmarks

MMLU [26] A diverse MCQA benchmark spanning 57 subjects, including the humanities, STEM, law,
and history. Its broad coverage allows us to assess the knowledge retained after training Foundation-
Sec-8B-Instruct, helping us detect signs of overfitting or catastrophic forgetting.

HumanEval [8] Measures Python programming ability using prompts with docstrings. Programming
is a critical skill in the cybersecurity field, and many cybersecurity research tasks involve programming.
This benchmark helps gauge how well Foundation-Sec-8B-Instruct retains such capabilities.

BigBenchHard [61] A challenging subset of BIG-bench [58], where prior LLMs have underperformed
compared to average human raters. Success on BigBenchHard requires strong reasoning across arith-
metic, logic, geometry, spatial and temporal tasks, as well as general and semantic knowledge. We use it
to evaluate the model’s underlying reasoning ability.

IFEval [80] Tests a model’s ability to follow verifiable instructions (e.g., “output as a JSON object”). It
includes 25 instruction types across roughly 500 prompts. Strong performance on IFEval is indicative of
downstream usability in cybersecurity workflows.



AlpacaEval 2 [18] An automatic evaluation metric that scores a model’s chat responses based on
alignment with human preferences. Unlike other benchmarks, it is reference-free—open-ended questions
with no ground-truth answers. We use AlpacaEval 2 to assess how well the model performs as a chatbot
and how closely its responses align with user expectations.

GSMS8K [12] A dataset of high-quality grade school math problems involving moderate difficulty and
early algebra. While not directly related to cybersecurity, the domain’s broad demands justify evaluating
on GSMS8K to build a more complete view of overall model performance.

MATH [27] A collection of 12,500 math competition problems requiring advanced reasoning beyond
grade school level. Solving them demands multi-step thinking and heuristics. We include MATH to
probe Foundation-Sec-8B-Instruct’s ability for structured, step-by-step reasoning—key for tackling
complex cybersecurity challenges.

Benchmark Metric Notes

MMLU exact match weighted macro average
HumanEval pass@10 temperature 0.8
BigBenchHard exact match 3-shot CoT
IFEval pass@1 prompt loose average
AlpacaEval 2 length controlled win rate 0-shot

GSMS8K exact match 8-shot CoT
MATH flex exact match 4-shot CoT

Table 7 | Summary of the post-training evaluation metrics. For MATH, we adopt the ‘flex, exact match’
evaluation scheme from [37].

C. Cybersecurity Taxonomy

We organize the topic of cybersecurity into the following categories:

1. Governance, Risk, and Compliance (GRC)

+ Risk Management & Security Strategy

« Compliance and Regulations (e.g., GDPR, HIPAA)
« Security Frameworks (e.g., NIST CSF, ISO 27001)
« Security Policies & Architecture

2. Network, Infrastructure, and Endpoint Security

+ Perimeter and Network Security (Firewalls, VPNs, Wireless)
+ Endpoint Protection & MDM

+ IoT and OT/ICS Security

« Mobile Security

3. Application and Software Security

« Secure Software Development (DevSecOps)

» Application & API Security

+ Vulnerability Management & Penetration Testing

+ Software Supply Chain Security (SBOM, third-party risk)
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4. Cloud and Data Security

+ Cloud Security Architecture & Tools

« Identity and Access Management (IAM, PAM)

« Data Loss Prevention & Privacy (DLP, encryption)
+ Cloud Compliance & Shared Responsibility Model

5. Identity, Access, and Zero Trust

« Authentication & Authorization (MFA, SSO, RBAC)
« Identity Governance & Lifecycle

o Zero Trust Architecture

+ Privileged Access Controls

6. Security Operations and Monitoring (SecOps)

« SIEM, SOC, and Log Management

+ Security Automation & SOAR

+ Detection Engineering

» Operational Resilience & Monitoring

7. Threat Intelligence and Incident Response

« Threat Detection, Analysis & Hunting

+ Threat Intelligence Platforms & IOCs

« Advanced Persistent Threats (APTs)

« Malware Techniques

« Incident Response, Recovery & Digital Forensics

8. Cryptography and Secure Communications

« Cryptographic Algorithms & PKI

+ Key Management

+ Post-Quantum Cryptography

« Secure Protocols and Encryption Practices

9. Security Awareness and Human Risk

+ Social Engineering Techniques (Phishing, Pretexting)
+ Insider Threat Management

« Security Awareness Training

+ Behavioral Risk Analysis

10. Emerging Technologies and Future Threats

« AI/ML & LLM Security (adversarial ML, prompt injection)
« Quantum Security Threats

+ Deepfakes & Synthetic Media

« Nation-State Threats and Geopolitical Risk

D. Post-Training Data Analysis

Here we present further details into our estimates for cybersecurity content in open-sourced post-training
datasets. We limit our analysis to only prompts and do not consider responses.
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D.1. Keyword Filtering Methodology

We apply a series of pattern matching filters to detect cybersecurity relevance. The set of 795 key-
words that is used in this study draws from general cybersecurity concepts (e.g., authentication,
encryption,and vulnerability), cybersecurity tools and frameworks (e.g., SIEM and SOAR), threat land-
scape terminology (e.g., zero-day exploit), and types of attacks (e.g., SQL injection and cross-site
scripting). In addition, we used regex patterns to match various structured technical identifiers, in-
cluding CVEs, VWEs, MITRE ATT&CK Techniques, and NIST Control Identifiers. Data is preprocessed
prior to being sent to the filters in a series of steps, including URL and email removal, special character
and whitespace normalization. All the filtering we do is case-insensitive.

After initial passes through the datasets, we discovered two main issues that were adversely affecting
our classification accuracy. The first was that non-English texts were not being matched by our filters,
since our keyword bank only covered English terms, which increased our false negative rate. The second
issue was that a handful of keywords were contributing to substantial false positives, because they were
too general and had additional meanings extending beyond cybersecurity. These included common
words like “sandbox”, “policy”, and “secure”, and abbreviations like “APT”, “D0S”, and “C2”.

We addressed both of these issues in our final evaluation of the datasets. We used a FastText language
detection model [35] to filter out non-English prompts from our analysis, to avoid underestimating the
true percentages of cybersecurity-relevant prompts. We also excluded the 17 identified keywords that
incur high false positive rates from the original list of 795 when computing if the number of matches
exceeds the threshold for classification. Note that the Average Matches and Average Density statistics
in Table 8 do still include these keywords.

The filters are parameterized by a keyword threshold. We balanced the threshold based on careful
tuning, so it can work in tandem with the cybersecurity classification model in the second part of the
pipeline.

Source Hits % Dataset Average Matches Average Density Dataset Size
OpenOrca 37,451 0.88% 1.4 0.8% 4,233,923
Tilu 3 SFT Mixture 17,264 1.84% 2.0 2.4% 939,343
Tdlu 2 SFT Mixture 8,021 2.46% 1.8 1.32% 326,154
WizardLM Evol Instruct 1,479 2.11% 2.2 2.7% 70,000
Nemotron SFT Chat 806 2.03% 1.8 3.46% 39,792
Nemotron SFT Safety 216 0.69% 1.6 2.03% 31,426
Open Platypus 184 0.74% 1.8 1.63% 24,926
Alpaca 172 0.33% 1.2 14.43% 52,002

Table 8 | Keyword-based estimates of cybersecurity content in post-training datasets. Keyword threshold:
1. Average Matches and Average Density are only computed for prompts above the keyword threshold.
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D.2. Examples of Cybersecurity Content Identified

Example Cybersecurity Training Sample from Tiilu 3

Source: tulu-3-sft-mixture
ID: ai2-adapt-dev/evol_codealpaca_heval_decontaminated_93564
Keywords Found: hashing , password strength , salting, security

Training Sample Content:

Develop a Java program that utilizes the ‘shal‘ hashing algorithm along with a salt

for additional security to encrypt a user’s password. The program must then store
this encrypted password securely.

For an added level of complexity, your program must handle user input for the password
and the salt must be randomly generated each time the program runs for the same user’s
password. The salt alongside the hashed password should then be saved such that the
original password can still be verified but cannot be retrieved directly.

The program should also prevent users from choosing weak passwords such as short lengths,
commonly used words or sequences, etc. Implement a password strength checker, that
enforces complex password rules such as a minimum length, inclusion of uppercase and
lowercase letters, numbers, and special characters.

Also handle any exceptions that may occur during the execution and document the code
properly for better readability and future enhancements.

Test your program with multiple inputs to ensure that salting and hashing are working
correctly, and that weak passwords are rejected.

Please also provide an example of how to verify a password input against the stored,
hashed password.

Hints: You will need to use a library such as ’javax.crypto’ for creating the hashed
password, and Java’s SecureRandom class to generate random numbers for the salt.

\

Example Cybersecurity Training Sample from Nemotron

Source: nemotron-sft-chat
ID: 35961
Keywords Found: decryption, mitre, nist, security

Training Sample Content:

Write a 200-word free verse poem that personifies various security controls as diligent
guardians, emphasizing their role in protecting digital assets. The poem should
explore the concept of security through the metaphor of a well-maintained fortress,
highlighting the importance of regular audits in upholding the strength and resilience
of these cybersecurity defenses

— ASSISTANT MESSAGE —

How would you modify the poem to address the challenges of zero-day exploits and
Al-driven attacks, while maintaining the fortress metaphor and incorporating modern
hybrid cloud environments?

— ASSISTANT MESSAGE —
Can you revise the poem to integrate real-world cybersecurity frameworks like MITRE

ATT&CK or NIST CSF as architectural blueprints, while contrasting legacy systems as
crumbling wing of the fortress vulnerable to quantum decryption ?
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Tulu 3 SFT Tulu 2 SFT Open-Platypus Nemotron-Safety Nemotron-Chat

Benchmark EM NG ES LLM-ES EM NG ES LLM-ES EM NG ES LLM-ES EM NG ES LLM-ES EM NG ES LLM-ES

Post-Training Benchmarks

BigBenchHard  0.02 0.23 14.52 0.3 0.02 0.11 413 0.1 0.00 0.02 8.57 0.1 0.00 0.02 0.00 0.0 0.00 0.02 0.46 0.0
GSM8K 0.00 0.15 82.99 4.4 0.00 0.08 69.83 0.6 0.00 0.00 63.53 0.1 0.00 0.00 0.00 0.0 0.00 0.00 0.68 0.1
HumanEval 0.00 0.00 | 100.00 46.3 0.00 0.00 76.22 23.8 0.00 0.00 57.32 1.8 0.00 0.00 0.00 0.0 0.00 0.00 4.27 12

IFEval 0.00 0.00 28.83 2.8 0.00 0.00  21.07 0.7 0.00 0.00 2.40 0.0 0.00 0.00 2.22 0.2 0.00 0.00 4.25 0.0
MATH 0.00 0.30 52.58 53 0.00 0.00 9.44 0.0 97.80 42.78  99.78  91.0 0.00 0.00 0.00 0.0 0.00 0.00 0.72 0.0
MMLU 0.96 0.75 21.14 4.4 0.88 0.38 14.41 0.5 0.21 0.16 11.64 0.3 0.01 0.00 1.18 0.0 0.18 0.04 2.17 0.1
AlpacaEval 0.87 2.61 40.67 8.9 4.60 22.73  50.08 27.0 5.09 4.35 10.43 5.6 0.00 0.00 2.61 0.6 0.12 0.25 6.21 0.8

Security Benchmarks

CTI-ATE 0.00 0.00 0.00 0.0 0.00 0.00 838 0.0 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.0
CTI-MCQA 0.00 0.00 4.12 0.1 0.00 0.08 3.44 0.0 0.00 0.00 0.08 0.0 0.00 0.00 0.04 0.0 0.00 0.00 0.24 0.0

CTI-RCM 0.00 0.00 1.70 0.0 0.00 0.00 3.70 0.3 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.0 0.00 0.00 0.10 0.0
CTI-TAA 0.00 0.00 42.00 2.0 0.00 0.00 16.00 0.0 0.00 0.00 0.00 0.0 0.00 0.00 2.00 0.0 0.00 0.00 2.00 0.0
CTI-VSP 0.00 0.00 3.70 0.0 0.00 0.00 2.90 0.0 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.0
SecBench 0.00 0.34 23.87 0.2 0.00 0.34 32.61 0.0 0.00 0.00 0.84 0.0 0.00 0.00 0.00 0.0 0.00 0.00 4.71 0.2

SecBench-R 0.00 0.00 16.28 0.0 0.00 0.00 2791 0.0 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.0

MMLU-Sec 0.00 0.00 17.00 0.0 0.00 0.00  20.00 1.0 0.00 0.00 2.00 0.0 0.00 0.00 1.00 0.0 0.00 0.00 1.00 0.0
SecEval 0.00 0.00 14.98 0.6 0.00 0.00 11.08 0.6 0.00 0.00 0.48 0.1 0.00 0.00 0.08 0.0 0.00 0.00 0.96 0.0
CM-10K 0.04 0.23 23.93 1.1 0.11 0.43 25.40 18 0.00 0.00 2.36 0.0 0.00 0.00 0.64 0.0 0.06 0.07 2.44 0.3
CM-2K 0.05 0.10 23.80 0.8 0.10 0.20  25.05 1.9 0.00 0.00 2.30 0.0 0.00 0.00 0.45 0.1 0.10 0.05 2.05 0.1
CM-500 0.00 0.00 28.00 0.6 0.00 0.20  25.00 1.6 0.00 0.00 3.20 0.0 0.00 0.00 1.20 0.0 0.00 0.00 2.80 0.2
CM-80 0.00 0.00  35.00 25 0.00 1.25 28.75 i3 0.00 0.00 3.75 0.0 0.00 0.00 0.00 0.0 0.00 0.00 2.50 0.0

Table 9 | Detailed data contamination analysis across different datasets and benchmarks (Part 1). We
report percentages of counts with respect to benchmarks rounded off (%). EM = Exact Match, NG
= N-Gram Overlap, ES = Embedding Similarity, LLM-ES = LLM-based Embedding Similarity. CTI
= CTIBench, CM = CyberMetric, SecBench-R = SecBench-Reasoning, MMLU-Sec = MMLU-Security.
Light red indicates values < 2% but > 0%, red indicates values > 2% but < 50%, |dark red indicates
values > 50%.

E. Decontamination

E.1. Methodology

To mitigate evaluation leakage, we implement a layered decontamination methodology aimed at captur-
ing a wide spectrum of contamination in post-training corpora. Such contamination, whether exact
duplicates, partial matches, or semantically similar paraphrases, can artificially inflate benchmark perfor-
mance and mask a model’s true generalization ability. Our framework addresses this challenge through
two complementary stages: surface-level detection and semantic similarity retrieval.

Stage 1: Surface-Level Overlap We begin with exact match detection to identify benchmark samples
that appear verbatim in the training corpus, capturing the most direct forms of leakage. To detect
substantial partial matches, we also perform n-gram overlap analysis using a sliding 8-gram window.
A sample is flagged if over 50% of its tokens align with a retrieved chunk, striking a balance between
sensitivity to meaningful overlaps and filtering out incidental matches.

Stage 2: Semantic Similarity Retrieval Next, we index the training corpus using Sentence Trans-
former embeddings and query each benchmark sample against this index. We retain candidates with
cosine similarity between 0.75 and 0.95, capturing semantically close paraphrases while excluding
near-identical duplicates (cosine > 0.95)—already captured by exact matching—as well as unrelated
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Alpaca WizardLM Primus-Inst Primus-Reas OpenOrca

Benchmark EM NG ES LLM-ES EM NG ES LLM-ES EM NG ES LLM-ES EM NG ES LLM-ES EM NG ES LLM-ES

Post-Training Benchmarks

BigBenchHard  0.00 0.02  26.82 9.1 0.00 0.02  20.76 0.4 0.00 0.02 0.00 0.0 0.00 0.02 0.00 0.0 0.02 0.06 18.22 0.5

GSMS8K 0.00 0.00 11.60 0.1 0.00 0.00  34.95 0.0 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.0 0.00 0.08 | 90.60 0.8
HumanEval 0.00 0.00 58.54 12.8 0.00 0.00 = 71.34 3.0 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.0 0.00 0.00 30.49 49
IFEval 0.00 0.00  35.30 55 0.00 0.00  25.32 2.6 0.00 0.00 0.18 0.0 0.00 0.00 0.00 0.0 0.00 0.00 26.25 2.2
MATH 0.00 0.00  32.36 0.7 0.00 0.02 31.06 0.3 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.0 0.00 0.02 26.22 0.3
MMLU 0.13 0.06 21.34 1.0 0.21 0.16 14.16 0.3 0.04 0.04 0.01 0.0 0.19 0.12 0.01 0.0 0.81 0.38 36.48 27

AlpacaEval 0.25 0.00 46.58 13.6 0.62 0.12 36.07 53 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.0 0.50 0.25 41.74 6.8

Security Benchmarks

CTI-ATE 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.0 10.00  10.00 8.33 8.3 0.00 0.00 0.00 0.0
CTI-MCQA 0.00 0.00 344 0.1 0.00 0.00 1.84 0.0 0.00 0.00 0.00 0.0 3340 32.04 1348 10.2 0.00 0.00 1.08 0.1
CTI-RCM 0.00 0.00 0.00 0.0 0.00 0.00 0.10 0.0 0.00 0.00 0.00 0.0 83.10 7880 9150  74.9 0.00 0.00 0.80 0.0
CTI-TAA 0.00 0.00 0.00 0.0 0.00 0.00 2.00 0.0 0.00 0.00 0.00 0.0 0.00 0.00 4.00 0.0 0.00 0.00  46.00 0.0
CTI-VSP 0.00 0.00 0.10 0.0 0.00 0.00 0.80 0.0 0.00 0.00 0.00 0.0 83.10 78.20 7840 726 0.00 0.00 2.60 0.0
SecBench 0.00 0.00 29.41 0.8 0.00 0.17 18.66 0.3 0.00 0.34 0.00 0.0 0.00 0.00 0.00 0.0 0.00 0.17 13.78 0.7

SecBench-R 0.00 0.00 9.30 0.0 0.00 0.00 18.60 0.0 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.0 0.00 0.00 4.65 0.0
MMLU-Sec 0.00 0.00 13.00 2.0 0.00 1.00 10.00 0.0 0.00 1.00 0.00 0.0 1.00 0.00 1.00 0.0 0.00 0.00 15.00 0.0

SecEval 0.00 0.00 10.12 0.8 0.00 0.00 8.45 0.2 0.00 0.00 0.08 0.0 0.00 0.00 0.64 0.2 0.00 0.00 247 0.2
CM-10K 0.03 0.02 33.08 ) 0.01 0.09 21.74 11 0.00 0.06 0.03 0.0 0.00 0.02 0.13 0.0 0.08 0.10 18.29 2.2
CM-2K 0.00 0.00 33.30 3.1 0.00 0.05 22.90 i3 0.00 0.05 0.05 0.0 0.00 0.05 0.15 0.0 0.05 0.05 19.20 3.0
CM-500 0.00 0.00 33.20 2.2 0.00 0.00 24.60 0.6 0.00 0.00 0.20 0.0 0.00 0.00 0.00 0.0 0.20 0.00 19.40 1.8
CM-80 0.00 0.00 36.25 i3 0.00 0.00 23.75 i3 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.0 0.00 0.00 21.25 L3

Table 10 | Detailed data contamination analysis across different datasets and benchmarks (Part 2). We
report percentages of counts with respect to benchmarks rounded off (%). EM = Exact Match, NG = N-
Gram Overlap, ES = Embedding Similarity, LLM-ES = LLM-based Embedding Similarity. CTI = CTIBench,
CM = CyberMetric, SecBench-R = SecBench-Reasoning, MMLU-Sec = MMLU-Security, Primus-Inst =
Primus Instruct, Primus-Reas = Primus Reasoning. Light red indicates values < 2% but > 0%, red

indicates values > 2% but < 50%, dark red indicates values > 50%.

matches.

Threshold Selection and Justification Embedding similarity between corpora of security data tends
to be high by default, driven in part by shared domain-specific terminology and limited diversity in
publicly available security corpora. To mitigate inflated contamination estimates from this baseline
similarity, we tuned our threshold upwards, retaining only candidates with cosine similarity > 0.8. We
empirically found that this value reduces false positives (e.g., generic security-related discussions with
no real benchmark overlap) while preserving high-recall retrieval of genuinely contaminated samples.
The 0.95 upper bound further filters out near-identical paraphrases that are already captured by exact
matching. We detail these trade-offs with examples in the following subsection.

Human-in-the-Loop Verification via LLM-as-a-Judge To further improve robustness and reduce
false positives, we validate a subset of high-similarity matches using an LLM-as-a-judge approach. We
provide the model with paired benchmark and candidate training samples, prompting it to classify
whether the match represents a true semantic overlap (e.g., paraphrase or near-duplicate) or a false
positive arising from domain-specific but unrelated content. This qualitative filtering step helped
calibrate our understanding of contamination at different similarity levels (e.g., 0.75-0.8 vs. 0.8-0.9) and
confirmed that a non-trivial portion of borderline matches are not genuine overlaps.

While this layered approach provides robust coverage across detection types, we note that results
remain sensitive to hyperparameter choices, such as n-gram size and similarity thresholds. Though
decontamination cannot fully eliminate contamination, it significantly reduces the risk of benchmark
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leakage and improves the reliability of downstream evaluation.
We note that Primus-Reasoning and Open-Platypus contain samples from CTIBench and MATH respec-
tively, as disclosed in their respective works [38, 75].

E.2. Detailed Decontamination across benchmarks
Tables 9 and 10 present detailed decontamination across post-training benchmarks and other security
benchmarks.

Representative Examples at Different Similarity Levels Below, we provide representative ex-
amples of retrieved matches at different cosine similarity bands (0.75-0.8 and >0.8). These illustrate
the range of overlaps captured by our semantic search, from borderline paraphrases to closely aligned
restatements of benchmark items.

Embedding Similarity with cosine > 0.75

Benchmark Text: If a developer accidentally uses the *==" operator to compare two strings in a
security check, what potential security issue might this introduce according to the document?

Training Dataset Text:

L

"content”: "What is the difference between == and === control operators in
JavaScript?”,
"role": "user"

"content"”: "In JavaScript, == and === are comparison operators
used to test equality, but they differ significantly in how
they perform the comparison.\n\n- == is the abstract equality
comparison operator, also known as the \"loose\” equality
operator. It compares two values for equality after converting
both values to a common type. This type coercion can lead to
unexpected results when comparing different data types....

"role"”: "assistant"”

\

Embedding Similarity with cosine > 0.8

Benchmark Text: What are the best exercises for beginners?

Training Dataset Text:

L
{
"content"”: What are some beginner exercises? ,
"role"”: "user”
1,
{
"content"”: "It's great that you're interested in starting to
exercise! Here are some beginner-friendly exercises you might
want to try: walking, gentle yoga, bodyweight exercises like
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squats and lunges, and light stretching. Remember to start slow
, warm up before exercising, and cool down afterward. Also,
always listen to your body and rest if you need to. It's a good
idea to consult with a healthcare provider before starting any
new exercise regimen, especially if you have any pre-existing
health conditions. Happy exercising!”,
"role”: "assistant”

\

E.3. Examples of Decontaminated Samples

Example of Exact Match

Benchmark Text: When are hops added to the brewing process?
Training Dataset Text:
L
{
'content': 'In this task, You are given an open-domain
question that can be answered based on factual information.
Your task is to provide short answer (in a few words only)
for the given question. The short answer can be one or more
entities or it can also be boolean yes or no.
Example: when are hops added to the brewing process?
Example solution: The boiling process
Example explanation: The answer is correct because, at the end
of the boil, solid particles in the hopped wort are
separated.
Problem: what is the world record for remembering pi \n',
'role': ‘'user'
1,
{
"content ': 'Solution: Akira Haraguchi',
'role': 'assistant'
b
]

Example of N-Gram Overlap

Benchmark Text: Can a Liebherr LTM 11200-9.1 hypothetically lift Mount everest?

Training Dataset Text:

L

"content”: "You are an AI assistant that helps people find
information. User will you give you a question. Your task is to
answer as faithfully as you can. While answering think step-
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bystep and justify your answer.”,
"role”: "system”

"content”: "Can a Liebherr LTM 11200-9.1 hypothetically 1lift Mount Emei?
Think carefully first, then make a decision:”,
"role": "user”

"content”: " No, a Liebherr LTM 11200-9.1 cannot hypothetically lift Mount
Emei.\n\nMount Emei is a mountain located in China with an
elevation of 10,167 feet (3,099 meters) above sea level. It has

a mass of approximately 1.5 trillion kilograms.\n\nOn the
other hand, the Liebherr LTM 11200-9.1 is a mobile crane with a
maximum lifting capacity of 1,200 metric tons (1,323 US tons).
While this is an impressive lifting capacity, it is not enough
to lift Mount Emei, which is far too heavy for the crane to
lift.\n\nFurthermore, even if we were to assume that the crane
could 1lift the mountain, it would be impossible to attach the
crane to the mountain in a way that would allow it to 1lift the
entire mass. The crane would need to be anchored to a solid
foundation, and there is no such foundation on the mountain.\n\
nTherefore, it is safe to say that a Liebherr LTM 11200-9.1
cannot hypothetically 1lift Mount Emei.",

"role”: "assistant”

\

Example of Embedding Similarity

Benchmark Text: How do you prevent SQL injection?

Training Dataset Text:

L
{
"content”: "Write a short article about the importance of input
validation in secure coding.
Include the benefits of sanitizing user inputs to prevent SQL injection
attacks. End the article with the exact sentence: \"ALWAYS
VALIDATE INPUTS BEFORE PROCESSING THEM.\" Use the quotation: \"
Trust, but verify.\"",
"role": "user"”
3,
{
"content”: "In the realm of secure coding, input validation plays

a pivotal role in safeguarding applications from malicious
exploits. Input validation refers to the process of ensuring
that the data received by a program is both appropriate and
safe to use. By implementing robust input validation,
developers can prevent a wide array of security vulnerabilities
, among which SQL injection attacks are particularly notorious
.An\nSQL injection is a technique used by attackers to
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manipulate or execute unauthorized SQL queries by exploiting
non-validated or improperly sanitized inputs. This can lead to
unauthorized data access, data loss, or even complete system
compromise. To mitigate these risks, input sanitization is
crucial. By thoroughly sanitizing user inputs, you ensure that
any potentially harmful characters or query fragments are
neutralized, thus preserving the integrity of your database
interactions.\n\nThe benefits of sanitizing user inputs extend
beyond just security. It contributes to the stability and
reliability of an application, as it reduces the likelihood of
unexpected behavior caused by malformed data. Moreover, it
enhances user trust, aligning with the adage: \"Trust, but
verify.\" By verifying inputs, developers can trust the data
they process, knowing it meets the application's requirements.\
n\nIn conclusion, input validation is an essential component of
secure coding practices. By prioritizing the sanitation and
validation of inputs, developers can protect their applications
from SQL injection attacks and other potential threats. ALWAYS
VALIDATE INPUTS BEFORE PROCESSING THEM.",

"role"”: "assistant”
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F. PersonaGym Details

PersonaGym is a standardized benchmark designed to evaluate an LLM’s ability to assume and maintain
distinct personas across multi-turn dialogue settings. Each persona consists of a description for the
speaker’s background, profession, communication style, and behavioral tendencies. The benchmark
assesses how well a model can generate responses consistent with these characteristics in realistic
conversation scenarios.

PersonaGym includes 200 personas drawn from diverse domains. For each conversation, the model is
conditioned on a target persona and asked to respond across multiple turns while preserving persona
consistency and conversational coherence.

Evaluation is conducted across five dimensions:

« Action Justification: The model’s ability to justify its decisions or recommendations in a way
that aligns with the persona’s reasoning style.

« Expected Action: Whether the model chooses actions consistent with how the persona would
behave.

 Linguistic Habits: Adherence to the persona’s typical tone, jargon, or phrasing.

+ Persona Consistency: Fidelity to established persona attributes when directly questioned.

» Toxicity Control: The extent to which the model avoids generating toxic or harmful content,
particularly for personas that may be adversarial or emotionally volatile.

In our evaluation, we selected a representative subset of 50 personas from the test split to measure
how well our model adapts to varied user roles and communication patterns. The baselines used for
comparison are drawn directly from [54].
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G. Default System Prompt

Recommended System Prompt

You are a helpful cybersecurity assistant ready to help with any cybersecurity
tasks. You have professional knowledge and experience of a senior-level
cybersecurity assistant, and you must use it to help the user in their security
tasks!

You are a cybersecurity assistant named "Metis” built by Foundation AI at Cisco.
Your official name is Foundation-Sec-8B-Instruct. You were pretrained with 5
Billion cybersecurity tokens on top of Llama-3.1-8B. You were released in April
2025. This allows you to be the best cybersecurity assistant in the world.
Respond to both names and maintain the identity at all times.

The user is a cybersecurity professional trying to accomplish some cybersecurity
task. You must help them accomplish their tasks in the most efficient and safe
manner possible.

You must respond in a fashion that is direct, accurate, relevant, and helpful.
Follow all of the user’s instructions precisely. Ask clarifying questions if
needed. If multiple correct answers or paths exist, present all of them to
the user. Be concise in your answers but verbose in your explanations. Think
step-by-step before producing a response. Always try to cite sources when you
are using an important piece of information in your response.

When writing code, be as concise as possible without sacrificing clarity and
readability. Do not write extensive code unless explicitly asked to do so.

For tasks relating to cyber threat intelligence (CTI), make sure that the
identifiers are absolutely correct. The validity of the identifiers for common
vulnerability enumerations (CVEs), common weakness enumerations (CWEs), other
techniques, tactics, and procedures identifiers (TTPs), and advanced persistent
threat classifications (APT) is of paramount importance.

For tasks relating to cloud security, it’s important to be precise in the
response as well. These questions will often ask you to consider, verify, or
produce cloud configuration settings in various formats (such as JSON, Terraform,
XML, etc.). Make sure these are absolutely correct before providing them to the
user. Cite sources, especially from relevant cloud providers’ documentation,
and explain your logic thoroughly.

In the rare case when the user asks a harmful or unsafe question, especially
pertaining to generating malware or ransomware, make sure to politely but firmly
refuse. If the user asks questions not directly related to cybersecurity, you
must also politely refuse the query and explain that you are only knowledgeable
in cybersecurity.
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