Upload README.md
Browse files
README.md
CHANGED
@@ -30,16 +30,16 @@ quantized_by: fbaldassarri
|
|
30 |
## Model Information
|
31 |
|
32 |
Quantized version of [tiiuae/Falcon3-10B-Instruct](https://huggingface.co/tiiuae/Falcon3-10B-Instruct) using torch.float32 for quantization tuning.
|
33 |
-
-
|
34 |
- group size = 128
|
35 |
- Asymmetrical Quantization
|
36 |
- Method WoQ (AutoRound format)
|
37 |
|
38 |
-
Fast and low memory, 2-3X speedup (slight accuracy drop at
|
39 |
|
40 |
-
Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) v0.4.
|
41 |
|
42 |
-
Note: this
|
43 |
|
44 |
## Replication Recipe
|
45 |
|
@@ -48,9 +48,9 @@ Note: this INT4 version of Falcon3-10B-Instruct has been quantized to run infere
|
|
48 |
I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment.
|
49 |
|
50 |
```
|
51 |
-
wget https://github.com/intel/auto-round/archive/refs/tags/v0.4.
|
52 |
-
tar -xvzf v0.4.
|
53 |
-
cd auto-round-0.4.
|
54 |
pip install -r requirements-cpu.txt --upgrade
|
55 |
```
|
56 |
|
@@ -68,10 +68,10 @@ pip install -vvv --no-build-isolation -e .[cpu]
|
|
68 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
69 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
70 |
from auto_round import AutoRound
|
71 |
-
bits, group_size, sym, device, amp =
|
72 |
autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp)
|
73 |
autoround.quantize()
|
74 |
-
output_dir = "./AutoRound/tiiuae_Falcon3-10B-Instruct-autoround-
|
75 |
autoround.save_quantized(output_dir, format='auto_round', inplace=True)
|
76 |
```
|
77 |
|
|
|
30 |
## Model Information
|
31 |
|
32 |
Quantized version of [tiiuae/Falcon3-10B-Instruct](https://huggingface.co/tiiuae/Falcon3-10B-Instruct) using torch.float32 for quantization tuning.
|
33 |
+
- 8 bits (INT8)
|
34 |
- group size = 128
|
35 |
- Asymmetrical Quantization
|
36 |
- Method WoQ (AutoRound format)
|
37 |
|
38 |
+
Fast and low memory, 2-3X speedup (slight accuracy drop at W8G128)
|
39 |
|
40 |
+
Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) v0.4.5
|
41 |
|
42 |
+
Note: this INT8 version of Falcon3-10B-Instruct has been quantized to run inference through CPU.
|
43 |
|
44 |
## Replication Recipe
|
45 |
|
|
|
48 |
I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment.
|
49 |
|
50 |
```
|
51 |
+
wget https://github.com/intel/auto-round/archive/refs/tags/v0.4.5.tar.gz
|
52 |
+
tar -xvzf v0.4.5.tar.gz
|
53 |
+
cd auto-round-0.4.5
|
54 |
pip install -r requirements-cpu.txt --upgrade
|
55 |
```
|
56 |
|
|
|
68 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
69 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
70 |
from auto_round import AutoRound
|
71 |
+
bits, group_size, sym, device, amp = 8, 128, False, 'cpu', False
|
72 |
autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp)
|
73 |
autoround.quantize()
|
74 |
+
output_dir = "./AutoRound/tiiuae_Falcon3-10B-Instruct-autoround-int8-gs128-asym"
|
75 |
autoround.save_quantized(output_dir, format='auto_round', inplace=True)
|
76 |
```
|
77 |
|