fbaldassarri commited on
Commit
1f292e4
·
verified ·
1 Parent(s): 517ad37

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -9
README.md CHANGED
@@ -30,16 +30,16 @@ quantized_by: fbaldassarri
30
  ## Model Information
31
 
32
  Quantized version of [tiiuae/Falcon3-10B-Instruct](https://huggingface.co/tiiuae/Falcon3-10B-Instruct) using torch.float32 for quantization tuning.
33
- - 4 bits (INT4)
34
  - group size = 128
35
  - Asymmetrical Quantization
36
  - Method WoQ (AutoRound format)
37
 
38
- Fast and low memory, 2-3X speedup (slight accuracy drop at W4G128)
39
 
40
- Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) v0.4.4
41
 
42
- Note: this INT4 version of Falcon3-10B-Instruct has been quantized to run inference through CPU.
43
 
44
  ## Replication Recipe
45
 
@@ -48,9 +48,9 @@ Note: this INT4 version of Falcon3-10B-Instruct has been quantized to run infere
48
  I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment.
49
 
50
  ```
51
- wget https://github.com/intel/auto-round/archive/refs/tags/v0.4.4.tar.gz
52
- tar -xvzf v0.4.4.tar.gz
53
- cd auto-round-0.4.4
54
  pip install -r requirements-cpu.txt --upgrade
55
  ```
56
 
@@ -68,10 +68,10 @@ pip install -vvv --no-build-isolation -e .[cpu]
68
  model = AutoModelForCausalLM.from_pretrained(model_name)
69
  tokenizer = AutoTokenizer.from_pretrained(model_name)
70
  from auto_round import AutoRound
71
- bits, group_size, sym, device, amp = 4, 128, False, 'cpu', False
72
  autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp)
73
  autoround.quantize()
74
- output_dir = "./AutoRound/tiiuae_Falcon3-10B-Instruct-autoround-int4-gs128-asym"
75
  autoround.save_quantized(output_dir, format='auto_round', inplace=True)
76
  ```
77
 
 
30
  ## Model Information
31
 
32
  Quantized version of [tiiuae/Falcon3-10B-Instruct](https://huggingface.co/tiiuae/Falcon3-10B-Instruct) using torch.float32 for quantization tuning.
33
+ - 8 bits (INT8)
34
  - group size = 128
35
  - Asymmetrical Quantization
36
  - Method WoQ (AutoRound format)
37
 
38
+ Fast and low memory, 2-3X speedup (slight accuracy drop at W8G128)
39
 
40
+ Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) v0.4.5
41
 
42
+ Note: this INT8 version of Falcon3-10B-Instruct has been quantized to run inference through CPU.
43
 
44
  ## Replication Recipe
45
 
 
48
  I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment.
49
 
50
  ```
51
+ wget https://github.com/intel/auto-round/archive/refs/tags/v0.4.5.tar.gz
52
+ tar -xvzf v0.4.5.tar.gz
53
+ cd auto-round-0.4.5
54
  pip install -r requirements-cpu.txt --upgrade
55
  ```
56
 
 
68
  model = AutoModelForCausalLM.from_pretrained(model_name)
69
  tokenizer = AutoTokenizer.from_pretrained(model_name)
70
  from auto_round import AutoRound
71
+ bits, group_size, sym, device, amp = 8, 128, False, 'cpu', False
72
  autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp)
73
  autoround.quantize()
74
+ output_dir = "./AutoRound/tiiuae_Falcon3-10B-Instruct-autoround-int8-gs128-asym"
75
  autoround.save_quantized(output_dir, format='auto_round', inplace=True)
76
  ```
77