--- license: apache-2.0 base_model: nlpconnect/vit-gpt2-image-captioning tags: - generated_from_trainer model-index: - name: vit-gpt-person-image-captioning results: [] --- # vit-gpt-person-image-captioning This model is a fine-tuned version of [nlpconnect/vit-gpt2-image-captioning](https://huggingface.co/nlpconnect/vit-gpt2-image-captioning) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0173 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.9984 | 312 | 0.0211 | | 0.0609 | 2.0 | 625 | 0.0194 | | 0.0609 | 2.9984 | 937 | 0.0183 | | 0.021 | 4.0 | 1250 | 0.0176 | | 0.0194 | 4.992 | 1560 | 0.0173 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1