fadi77 commited on
Commit
1c638e5
·
verified ·
1 Parent(s): db645a2

Upload configuration file

Browse files
Files changed (1) hide show
  1. config.yml +114 -0
config.yml ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_dir: "/style_tts2/Models/FineTune.AudioBook"
2
+ log_interval: 10
3
+ device: "cuda"
4
+ epochs: 25 # number of finetuning epoch
5
+ batch_size: 6
6
+ max_len: 300 # maximum number of frames
7
+ pretrained_model_repo: "yl4579/StyleTTS2-LibriTTS"
8
+ pretrained_model_filename: "Models/LibriTTS/epochs_2nd_00020.pth"
9
+ second_stage_load_pretrained: true # set to true if the pre-trained model is for 2nd stage
10
+ load_only_params: true # set to true if do not want to load epoch numbers and optimizer parameters
11
+
12
+ F0_path: "/root/Utils/JDC/bst.t7"
13
+ ASR_config: "/root/Utils/ASR/config.yml"
14
+ ASR_path: "/root/Utils/ASR/epoch_00080.pth"
15
+ PLBERT_repo_id: "fadi77/pl-bert"
16
+ PLBERT_dirname: "models/mlm_only_with_diacritics"
17
+
18
+ data_params:
19
+ train_data: "Data/youtube_train_list.txt"
20
+ val_data: "Data/youtube_val_list.txt"
21
+ root_path: "Youtube/wavs"
22
+ OOD_data: "Data/youtube_train_list.txt"
23
+ min_length: 50 # sample until texts with this size are obtained for OOD texts
24
+
25
+ preprocess_params:
26
+ sr: 24000
27
+ spect_params:
28
+ n_fft: 2048
29
+ win_length: 1200
30
+ hop_length: 300
31
+
32
+ model_params:
33
+ multispeaker: false
34
+
35
+ dim_in: 64
36
+ hidden_dim: 512
37
+ max_conv_dim: 512
38
+ n_layer: 3
39
+ n_mels: 80
40
+
41
+ n_token: 178 # number of phoneme tokens
42
+ max_dur: 50 # maximum duration of a single phoneme
43
+ style_dim: 128 # style vector size
44
+
45
+ dropout: 0.2
46
+
47
+ # config for decoder
48
+ decoder:
49
+ type: 'hifigan' # either hifigan or istftnet
50
+ resblock_kernel_sizes: [3,7,11]
51
+ upsample_rates : [10,5,3,2]
52
+ upsample_initial_channel: 512
53
+ resblock_dilation_sizes: [[1,3,5], [1,3,5], [1,3,5]]
54
+ upsample_kernel_sizes: [20,10,6,4]
55
+
56
+ # speech language model config
57
+ slm:
58
+ model: 'microsoft/wavlm-base-plus'
59
+ sr: 16000 # sampling rate of SLM
60
+ hidden: 768 # hidden size of SLM
61
+ nlayers: 13 # number of layers of SLM
62
+ initial_channel: 64 # initial channels of SLM discriminator head
63
+
64
+ # style diffusion model config
65
+ diffusion:
66
+ embedding_mask_proba: 0.1
67
+ # transformer config
68
+ transformer:
69
+ num_layers: 3
70
+ num_heads: 8
71
+ head_features: 64
72
+ multiplier: 2
73
+
74
+ # diffusion distribution config
75
+ dist:
76
+ sigma_data: 0.2 # placeholder for estimate_sigma_data set to false
77
+ estimate_sigma_data: true # estimate sigma_data from the current batch if set to true
78
+ mean: -3.0
79
+ std: 1.0
80
+
81
+ loss_params:
82
+ lambda_mel: 5. # mel reconstruction loss
83
+ lambda_gen: 1. # generator loss
84
+ lambda_slm: 1. # slm feature matching loss
85
+
86
+ lambda_mono: 1. # monotonic alignment loss (TMA)
87
+ lambda_s2s: 1. # sequence-to-sequence loss (TMA)
88
+
89
+ lambda_F0: 1. # F0 reconstruction loss
90
+ lambda_norm: 1. # norm reconstruction loss
91
+ lambda_dur: 1. # duration loss
92
+ lambda_ce: 20. # duration predictor probability output CE loss
93
+ lambda_sty: 1. # style reconstruction loss
94
+ lambda_diff: 1. # score matching loss
95
+
96
+ # Note: Current values for training are only adequate for second stage finetuning.
97
+ diffusion_training_epoch: 5
98
+ joint_training_epoch: 100
99
+
100
+ # Note: Current values for learnings rates are very low. This is only adequate for second stage finetuning.
101
+ optimizer_params:
102
+ lr: 0.0001 # general learning rate
103
+ bert_lr: 0.00001 # learning rate for PLBERT
104
+ ft_lr: 0.0001 # learning rate for acoustic modules
105
+
106
+ slmadv_params:
107
+ min_len: 400 # minimum length of samples
108
+ max_len: 500 # maximum length of samples
109
+ batch_percentage: 0.5 # to prevent out of memory, only use half of the original batch size
110
+ skip_update: 10 # update the discriminator every this iterations of generator update
111
+ thresh: 5 # gradient norm above which the gradient is scaled
112
+ scale: 0.01 # gradient scaling factor for predictors from SLM discriminators
113
+ sig: 1.5 # sigma for differentiable duration modeling
114
+