Migrate model card from transformers-repo
Browse filesRead announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/facebook/wmt19-de-en/README.md
README.md
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- de
|
4 |
+
- en
|
5 |
+
tags:
|
6 |
+
- translation
|
7 |
+
- wmt19
|
8 |
+
- facebook
|
9 |
+
license: apache-2.0
|
10 |
+
datasets:
|
11 |
+
- wmt19
|
12 |
+
metrics:
|
13 |
+
- bleu
|
14 |
+
thumbnail: https://huggingface.co/front/thumbnails/facebook.png
|
15 |
+
---
|
16 |
+
|
17 |
+
# FSMT
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for de-en.
|
22 |
+
|
23 |
+
For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).
|
24 |
+
|
25 |
+
The abbreviation FSMT stands for FairSeqMachineTranslation
|
26 |
+
|
27 |
+
All four models are available:
|
28 |
+
|
29 |
+
* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)
|
30 |
+
* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)
|
31 |
+
* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)
|
32 |
+
* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
#### How to use
|
37 |
+
|
38 |
+
```python
|
39 |
+
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
|
40 |
+
mname = "facebook/wmt19-de-en"
|
41 |
+
tokenizer = FSMTTokenizer.from_pretrained(mname)
|
42 |
+
model = FSMTForConditionalGeneration.from_pretrained(mname)
|
43 |
+
|
44 |
+
input = "Maschinelles Lernen ist großartig, oder?"
|
45 |
+
input_ids = tokenizer.encode(input, return_tensors="pt")
|
46 |
+
outputs = model.generate(input_ids)
|
47 |
+
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
48 |
+
print(decoded) # Machine learning is great, isn't it?
|
49 |
+
|
50 |
+
```
|
51 |
+
|
52 |
+
#### Limitations and bias
|
53 |
+
|
54 |
+
- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)
|
55 |
+
|
56 |
+
## Training data
|
57 |
+
|
58 |
+
Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).
|
59 |
+
|
60 |
+
## Eval results
|
61 |
+
|
62 |
+
pair | fairseq | transformers
|
63 |
+
-------|---------|----------
|
64 |
+
de-en | [42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750) | 41.35
|
65 |
+
|
66 |
+
The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:
|
67 |
+
- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).
|
68 |
+
- re-ranking
|
69 |
+
|
70 |
+
The score was calculated using this code:
|
71 |
+
|
72 |
+
```bash
|
73 |
+
git clone https://github.com/huggingface/transformers
|
74 |
+
cd transformers
|
75 |
+
export PAIR=de-en
|
76 |
+
export DATA_DIR=data/$PAIR
|
77 |
+
export SAVE_DIR=data/$PAIR
|
78 |
+
export BS=8
|
79 |
+
export NUM_BEAMS=15
|
80 |
+
mkdir -p $DATA_DIR
|
81 |
+
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
|
82 |
+
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
|
83 |
+
echo $PAIR
|
84 |
+
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
|
85 |
+
```
|
86 |
+
note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.
|
87 |
+
|
88 |
+
## Data Sources
|
89 |
+
|
90 |
+
- [training, etc.](http://www.statmt.org/wmt19/)
|
91 |
+
- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)
|
92 |
+
|
93 |
+
|
94 |
+
### BibTeX entry and citation info
|
95 |
+
|
96 |
+
```bibtex
|
97 |
+
@inproceedings{...,
|
98 |
+
year={2020},
|
99 |
+
title={Facebook FAIR's WMT19 News Translation Task Submission},
|
100 |
+
author={Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey},
|
101 |
+
booktitle={Proc. of WMT},
|
102 |
+
}
|
103 |
+
```
|
104 |
+
|
105 |
+
|
106 |
+
## TODO
|
107 |
+
|
108 |
+
- port model ensemble (fairseq uses 4 model checkpoints)
|
109 |
+
|