add files
Browse files- README.md +150 -0
- config.json +45 -0
- preprocessor_config.json +11 -0
- pytorch_model.bin +3 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- vocab.json +0 -0
README.md
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
datasets:
|
4 |
+
- librispeech_asr
|
5 |
+
tags:
|
6 |
+
- audio
|
7 |
+
- automatic-speech-recognition
|
8 |
+
license: MIT
|
9 |
+
---
|
10 |
+
|
11 |
+
|
12 |
+
# S2T-MEDIUM-LIBRISPEECH-ASR
|
13 |
+
|
14 |
+
`s2t-medium-librispeech-asr` is a Speech to Text Transformer (S2T) model trained for automatic speech recognition (ASR).
|
15 |
+
The S2T model was proposed in [this paper](https://arxiv.org/abs/2010.05171) and released in
|
16 |
+
[this repository](https://github.com/pytorch/fairseq/tree/master/examples/speech_to_text)
|
17 |
+
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
S2T is an end-to-end sequence-to-sequence transformer model. It is trained with standard
|
22 |
+
autoregressive cross-entropy loss and generates the transcripts autoregressively.
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
This model can be used for end-to-end speech recognition (ASR).
|
27 |
+
See the [model hub](https://huggingface.co/models?filter=speech_to_text_transformer) to look for other S2T checkpoints.
|
28 |
+
|
29 |
+
|
30 |
+
### How to use
|
31 |
+
|
32 |
+
As this a standard sequence to sequence transformer model, you can use the `generate` method to generate the
|
33 |
+
transcripts by passing the speech features to the model.
|
34 |
+
|
35 |
+
*Note: The `Speech2TextProcessor` object uses [torchaudio](https://github.com/pytorch/audio) to extract the
|
36 |
+
filter bank features. Make sure to install the `torchaudio` package before running this example.*
|
37 |
+
|
38 |
+
To install `torchaudio` run `pip install torchaudio`
|
39 |
+
|
40 |
+
|
41 |
+
```python
|
42 |
+
import torch
|
43 |
+
from transformers import Speech2TextProcessor, Speech2TextTransformerForConditionalGeneration
|
44 |
+
from datasets import load_dataset
|
45 |
+
import soundfile as sf
|
46 |
+
|
47 |
+
model = Speech2TextTransformerForConditionalGeneration.from_pretrained("facebook/s2t-medium-librispeech-asr")
|
48 |
+
processor = Speech2Textprocessor.from_pretrained("facebook/s2t-medium-librispeech-asr")
|
49 |
+
|
50 |
+
def map_to_array(batch):
|
51 |
+
speech, _ = sf.read(batch["file"])
|
52 |
+
batch["speech"] = speech
|
53 |
+
return batch
|
54 |
+
|
55 |
+
ds = load_dataset(
|
56 |
+
"patrickvonplaten/librispeech_asr_dummy",
|
57 |
+
"clean",
|
58 |
+
split="validation"
|
59 |
+
)
|
60 |
+
ds = ds.map(map_to_array)
|
61 |
+
|
62 |
+
input_features = processor(
|
63 |
+
ds["speech"][0],
|
64 |
+
sampling_rate=16_000,
|
65 |
+
return_tensors="pt"
|
66 |
+
).input_features # Batch size 1
|
67 |
+
generated_ids = model.generate(input_ids=input_features)
|
68 |
+
|
69 |
+
transcription = processor.batch_decode(generated_ids)
|
70 |
+
```
|
71 |
+
|
72 |
+
#### Evaluation on LibriSpeech Test
|
73 |
+
|
74 |
+
The following script shows how to evaluate this model on the [LibriSpeech](https://huggingface.co/datasets/librispeech_asr)
|
75 |
+
*"clean"* and *"other"* test dataset.
|
76 |
+
|
77 |
+
```python
|
78 |
+
from datasets import load_dataset, load_metric
|
79 |
+
from transformers import Speech2TextTransformerForConditionalGeneration, Speech2TextProcessor
|
80 |
+
import soundfile as sf
|
81 |
+
|
82 |
+
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") # change to "other" for other test dataset
|
83 |
+
wer = load_metric("wer")
|
84 |
+
|
85 |
+
model = Speech2TextTransformerForConditionalGeneration.from_pretrained("facebook/s2t-medium-librispeech-asr").to("cuda")
|
86 |
+
processor = Speech2TextProcessor.from_pretrained("facebook/s2t-medium-librispeech-asr", do_upper_case=True)
|
87 |
+
|
88 |
+
def map_to_array(batch):
|
89 |
+
speech, _ = sf.read(batch["file"])
|
90 |
+
batch["speech"] = speech
|
91 |
+
return batch
|
92 |
+
|
93 |
+
librispeech_eval = librispeech_eval.map(map_to_array)
|
94 |
+
|
95 |
+
def map_to_pred(batch):
|
96 |
+
features = processor(batch["speech"], sampling_rate=16000, padding=True, return_tensors="pt")
|
97 |
+
input_features = features.input_features.to("cuda")
|
98 |
+
attention_mask = features.attention_mask.to("cuda")
|
99 |
+
|
100 |
+
gen_tokens = model.generate(input_ids=input_features, attention_mask=attention_mask)
|
101 |
+
batch["transcription"] = processor.batch_decode(gen_tokens, skip_special_tokens=True)
|
102 |
+
return batch
|
103 |
+
|
104 |
+
result = librispeech_eval.map(map_to_pred, batched=True, batch_size=8, remove_columns=["speech"])
|
105 |
+
|
106 |
+
print("WER:", wer(predictions=result["transcription"], references=result["text"]))
|
107 |
+
```
|
108 |
+
|
109 |
+
*Result (WER)*:
|
110 |
+
|
111 |
+
| "clean" | "other" |
|
112 |
+
|:-------:|:-------:|
|
113 |
+
| 3.5 | 7.8 |
|
114 |
+
|
115 |
+
|
116 |
+
|
117 |
+
## Training data
|
118 |
+
|
119 |
+
The S2T-MEDIUM-LIBRISPEECH-ASR is trained on [LibriSpeech ASR Corpus](https://www.openslr.org/12), a dataset consisting of
|
120 |
+
approximately 1000 hours of 16kHz read English speech.
|
121 |
+
|
122 |
+
|
123 |
+
## Training procedure
|
124 |
+
|
125 |
+
### Preprocessing
|
126 |
+
|
127 |
+
The speech data is pre-processed by extracting Kaldi-compliant 80-channel log mel-filter bank features automatically from
|
128 |
+
WAV/FLAC audio files via PyKaldi or torchaudio. Further utterance-level CMVN (cepstral mean and variance normalization)
|
129 |
+
is applied to each example.
|
130 |
+
|
131 |
+
The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 10,000.
|
132 |
+
|
133 |
+
|
134 |
+
### Training
|
135 |
+
|
136 |
+
The model is trained with standard autoregressive cross-entropy loss and using [SpecAugment](https://arxiv.org/abs/1904.08779).
|
137 |
+
The encoder receives speech features, and the decoder generates the transcripts autoregressively.
|
138 |
+
|
139 |
+
|
140 |
+
### BibTeX entry and citation info
|
141 |
+
|
142 |
+
```bibtex
|
143 |
+
@inproceedings{wang2020fairseqs2t,
|
144 |
+
title = {fairseq S2T: Fast Speech-to-Text Modeling with fairseq},
|
145 |
+
author = {Changhan Wang and Yun Tang and Xutai Ma and Anne Wu and Dmytro Okhonko and Juan Pino},
|
146 |
+
booktitle = {Proceedings of the 2020 Conference of the Asian Chapter of the Association for Computational Linguistics (AACL): System Demonstrations},
|
147 |
+
year = {2020},
|
148 |
+
}
|
149 |
+
|
150 |
+
```
|
config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_dropout": 0.15,
|
3 |
+
"activation_function": "relu",
|
4 |
+
"architectures": [
|
5 |
+
"Speech2TextTransformerForConditionalGeneration"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.15,
|
8 |
+
"bos_token_id": 0,
|
9 |
+
"classifier_dropout": 0.0,
|
10 |
+
"conv_channels": 1024,
|
11 |
+
"conv_kernel_sizes": [
|
12 |
+
5,
|
13 |
+
5
|
14 |
+
],
|
15 |
+
"d_model": 512,
|
16 |
+
"decoder_attention_heads": 8,
|
17 |
+
"decoder_ffn_dim": 2048,
|
18 |
+
"decoder_layerdrop": 0.0,
|
19 |
+
"decoder_layers": 6,
|
20 |
+
"decoder_start_token_id": 2,
|
21 |
+
"dropout": 0.15,
|
22 |
+
"early_stopping": true,
|
23 |
+
"encoder_attention_heads": 8,
|
24 |
+
"encoder_ffn_dim": 2048,
|
25 |
+
"encoder_layerdrop": 0.0,
|
26 |
+
"encoder_layers": 12,
|
27 |
+
"eos_token_id": 2,
|
28 |
+
"gradient_checkpointing": false,
|
29 |
+
"init_std": 0.02,
|
30 |
+
"input_channels": 1,
|
31 |
+
"input_feat_per_channel": 80,
|
32 |
+
"is_encoder_decoder": true,
|
33 |
+
"max_length": 200,
|
34 |
+
"max_source_positions": 6000,
|
35 |
+
"max_target_positions": 1024,
|
36 |
+
"model_type": "speech_to_text_transformer",
|
37 |
+
"num_beams": 5,
|
38 |
+
"num_conv_layers": 2,
|
39 |
+
"num_hidden_layers": 12,
|
40 |
+
"pad_token_id": 1,
|
41 |
+
"scale_embedding": true,
|
42 |
+
"transformers_version": "4.4.0.dev0",
|
43 |
+
"use_cache": true,
|
44 |
+
"vocab_size": 10000
|
45 |
+
}
|
preprocessor_config.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_size": 80,
|
4 |
+
"norm_means": true,
|
5 |
+
"norm_vars": true,
|
6 |
+
"num_mel_bins": 80,
|
7 |
+
"padding_side": "right",
|
8 |
+
"padding_value": 0.0,
|
9 |
+
"return_attention_mask": true,
|
10 |
+
"sampling_rate": 16000
|
11 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b016d9dde06a7d3f73855d19ef597b61055a5ef6d9ec0d12132c7f4077e2aea
|
3 |
+
size 284968270
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:052a168787a9160b4b2ba54e4995e9600298812c34191ca3f70cea51cd4f5c1e
|
3 |
+
size 416684
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "do_upper_case": false, "do_lower_case": true, "tgt_lang": null, "lang_codes": null, "special_tokens_map_file": "/home/suraj/.cache/huggingface/transformers/f39f1499e9c4d2b3e803e3cad8a31c4cf3e626e1c69197d4cd6921e5c07007f9.9d6cd81ef646692fb1c169a880161ea1cb95f49694f220aced9b704b457e51dd", "tokenizer_file": null, "name_or_path": "hf_models_fb/s2t-small-librispeech-asr/"}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|