fabiochiu's picture
LunarLander
c3a2d8b
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7f3df54fa050>", "_build": "<function DQNPolicy._build at 0x7f3df54fa0e0>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7f3df54fa170>", "forward": "<function DQNPolicy.forward at 0x7f3df54fa200>", "_predict": "<function DQNPolicy._predict at 0x7f3df54fa290>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f3df54fa320>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f3df54fa3b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3df55722d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVNAsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBSMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAA4R93boU6LROmLSqoY6JOlqt24s9DipGkh+jpx99yYlTmyzUvw7XD/hm8t7ubhbmP3ZqHaV6IQG1klJaCDMjinYYKQlsW6y/wDyXVGftC3pGnOLce+O5dPBREi+/J3vOXhRHZ5/YJoax6Q4lY1HM0LTIkHDATcjEX2d5ecST6C+TYnpRdEDk9xtXpq31whzsQikjS/fhhTkU/1Z2EtfXH1XWtSvomhUzLR3tZ5JZYWASLziqoqEcFYUkEid2GBiKoRhxy5haCsgi8uRmhQHWz/qZTp2ZZiiYiw4furOsgsyAIXYWzdKlCvvI1ciECaAxuCWv6zFwq62+zwFyTD3nXIRw+AU3LJomqvwQskH9FN1Dns+sxEiCqz00BxO5y9qAe12itQGsJ1t0mDbk10hLFmzp3qorQ4A1wg23xBO4wJ4N0REIZfxxDGXs2Nmq3QjFG3Shc7feXE6ebd2w7c7ETZyqheD9OVQWZgG6aM0SXsl6JxZyck+W+qn7lEaGsNdy6cscbbv5aLCOCXGC/04e9AhMFyeqhbp8zo3owc3jgg3gWhVnZ3sN2WNUqW6WsmiEI+qJInu+U5Vu1Wpwb+qjbj3xKQxTsIQVBsTpEal1kyQK/jCWkA5oDjJs1CUOo01AqURqxEa6o1uKC/7L7ShIxtkPL/YeSJf5ziFBhThuM5CreSTJkcfHV7fIR5tb44P9F5QzFrBe2uIbmXrHbd+bGS9Kg4iK4qMxtXWYsZMl9qIWXoV7OWmZ3st86P+g7LGcrNZb/LfU0YONi1DrpM+r3G9r6Verfc7/TAPbN2r4raN1lKdyqN7kkyDmFpUjTHKftlKtE3fXTlCsTRKnI3uaWNejSraFOUMiytukkwk24f+GddIRudfCQQcModKxjds3skJiKdbgo0Mcqwb0LtR+0aKM2c07N8h7WK5OyWWF1ZG3uUYL0zL4TedT17BqUWzEg2jW3L5Fa6TkLAAVDhTwOIMNrfmmJYUsQEjhIB5OY978P68eH1Iz4iWvQhPdLbp3HG8Nw2tYQg1ML9mhdPohMGBuYy2ENJm8YZ6JZB8MSnbY51dvYM+IP2A839orpK841T9pRDremUvHG9oCb/M4TMwPQKwBKLf6BUUKMxAuIKid5iP6GKzE+tCUF8xopZU1F1/K1XpD8pa7OSMSYehoziNWj+IyI/WW+dLcGdrtgGfLw5up5XoFbEb0DtkIIPEpjuNd935SccKW8ykg8rcopizxMdzMoBaGe06H5cI+h866SAYtAWkmrTab2y1dNGthHKpY/UiTKlBxFhV2KoXUAxpDLnCmSXAMbG9yh/jg/HUN9/8ulbCqh11Ljb1IY8VRTwE0Lxh/tqJ5m6C7By3gRXgvGzVlo8TinuKjH7bEJcuP7uebT0W5qffNp3us6r+264uxJygqdWOIlJueNdhHMfzMd6fp/C1M/TWRa5SnD7UAITgKp0e+iec/8yxNu6JQ8o8BJs839XOZ1QLpHFwzp1QomXF5a/eP3DJxotlOX0MH5JSB4l2Sz77lqDbEH6GYAE6x5GrMlykK29T15XCResik8Xa8Vox5/UyI7Hri029QRAbFnOOOShfRW5uO+2/R/98V5J931jU+5RG4Wx/nFCW1PVAnRZBsApe3HT6A8QgTZeq1HEPeSCy+Af3fvWi+78ogG79HaGeIzKZfSRNMoMUXS0O2qEIZvc79XDQNhIfu4M9BJPzU42oaaqaUUgIMaYlS63Lne+jvA42cAIiiMQIsRB+ivjaFz9aonEJcafwCePzlMQu0X80gqaJZxVn1f9Z591TbFOGA5SwmX+LpJF8tuwXTLZDapZyqdFpZABKbYcojxOGxoKfztK/nAq3U/lVD6G0zH7NZ4UfntnIIV/cG/gncIbHEiSz6NO+AsIy67BQDTL1orDSgrIjaUB6sza+TW8qfun6DJDuH6nGU1SrIscqbVLcT8f9IwsHkGs24FlRffeZlR/o9cD8DnUPiImb0234ZvitiIkk7kmwQCfoS/nPzQ4I9K+kQ1sO25u8VDztXrLWp0qcHlBtvFLoZH1jBBDxCutr6xnQ6scem/BH4UPbyYnp0JUJvOTzeThF/COpE0OJypbCcdkrWgz8NU6hpBN3ha6G5mABHwJ5oHBvOq/7jPT73l3xjOHJAWEvgRJbipCO6HWLzunp6vcpZd2NoRUNPO9oaPm2x5t5PoWqKY6aDmn0NmfjL0+GJhE5JtDkArSF+pPgy9Od0071iMEk5GYTpqHAmpll66r/70gCXpIMJxmpxKPtS1hYD+ENHPU5XW56lo93+uEvzwI/Y4XhKk8crLqe6EiQl6vDwTd46zqm/2DHZ3WWq0HxKiwLNCZEMKj+KdmSD48Ezazs8jmyrFgM3iruQBSP5c9RQ5mVyO3DRox8y8Y/eOyLxumeQWmFuHsmTjxgb6HCHjsjIuV/RPdW3VpEG0uh6eZ39tNQ3LShDTLVAUL8PtDZiqSen3+FpTe46TwPrlui88rE1XbtHfzf0Cc+wtobwSqYdm75+uEf+8sVtkV5XqCdgbg8ljItbIx61QyiLlhuZp0svoxs2u3VTFr2cXacFYCPfnD8yE5wMAMozgTj1ld4Kty8nlQhtw0Xvihd22NbK28kjt7uoF6/3M0j1hmrpKCqnl+0GjYYzp/jmW4lssArJX+obp77LIpFULszQbr5mmKuowqIxwgbRORHm+dsKee9lEJd9wcep97dOU/MguU9SP/Qtoi9OVp3oQHdFjuuwdxBsvq2gp1HysXDYpEbHY9fyTqMG3pxcB6Nr8ycsyYqZ+Jqaeo88JzsJbyWcCTAmXh4ZrrRp1x9ehzWMIB37LHCmchV2u9aB1weomrAbQensEL0QeMzdxTXxKOdIl+yZdgxLhJzIbenaXZ58GW2xle52EcAdn4LqUmXLmFUJg2yuwpNUuC5VZLjmRfF66nhJa+JiSN0BUEhE7Iq8F8jP5DYohW0tD/iyARZfF/IF7FthBdHDHFj4kMGuM72epAeEVeYS/cR+G+rBTGiiw8alhfm80zO9sMhDwllEdnd+kF0NDEdiP24ZQwTWdt6NYAmPLiZAaOgD3ShJ5n0vdtymNwP5m/4ltMV1pChpwqKQGtQjzM0WpNTJ/TvVQ5ldUTvwsCYQqKheduB2KeooA/C0G4pygUGQaNJuNss1iYYUnEJe0UBdxs37GEOvU+PDmZoSZQcC3oRhxjfua1vrvRStcq0gOVQ2C8ATMg6EzISsGgmVml1stIWkVLMM91OMEPH4HcvETosCUSw0Zb5Pzr01+/pDXeIUNvj8MnLxgnZnz4JnkhhmTSN1zo9vED4xB+lPFJXLZlGgKjAJ1NJSJiIeUUpQoSwNoDk5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLE3WMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 500000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652885738.9767082, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAJoddzzSIMs864WcPbbxkLzz4Ik9BISEOQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAJqXajy4Y84835i6PROwfLxS2ok9bQNGPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_episode_num": 1105, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3j1A9+WuTcCUhpRSlIwBbJRN6AOMAXSUR0CT2TSM98qndX2UKGgGaAloD0MIWkV/aOY1NcCUhpRSlGgVTYABaBZHQJPdZ3LV4HJ1fZQoaAZoCWgPQwiughjoWo9uQJSGlFKUaBVNyAFoFkdAk+Ksg2ZRbnV9lChoBmgJaA9DCIhITbuYIlXAlIaUUpRoFU3oA2gWR0CT8njIq9XcdX2UKGgGaAloD0MIrI2xE96OZkCUhpRSlGgVTWIDaBZHQJP90kQf6oF1fZQoaAZoCWgPQwgdOj3vxqBDwJSGlFKUaBVN6ANoFkdAlA09/nW8RXV9lChoBmgJaA9DCMxCO6dZFWtAlIaUUpRoFU0LAmgWR0CUE1SZ0CA+dX2UKGgGaAloD0MICDvFqkFGa0CUhpRSlGgVTZEDaBZHQJQgnFxXGOx1fZQoaAZoCWgPQwjV6xaB8c5wQJSGlFKUaBVNNwFoFkdAlCPdE1EVnHV9lChoBmgJaA9DCPEO8KSFuxNAlIaUUpRoFU3oA2gWR0CUMUrU9ZA6dX2UKGgGaAloD0MIkdEBSdhzOMCUhpRSlGgVTegDaBZHQJQ+Rvl2eQN1fZQoaAZoCWgPQwh/FeC7TV9tQJSGlFKUaBVNkgFoFkdAlEJ9j9XLeXV9lChoBmgJaA9DCOPHmLuWyVVAlIaUUpRoFU3oA2gWR0CUT52aUiY+dX2UKGgGaAloD0MI3xXB/1aYRsCUhpRSlGgVTegDaBZHQJRhFSZSeiB1fZQoaAZoCWgPQwjSyOcVT4UpwJSGlFKUaBVN6ANoFkdAlG3pWeYlY3V9lChoBmgJaA9DCFD7rZ0okT9AlIaUUpRoFU3oA2gWR0CUeoOIInjRdX2UKGgGaAloD0MIMErQX+hxRcCUhpRSlGgVTYEBaBZHQJR+NBZ6lch1fZQoaAZoCWgPQwhDWfj6Wv1IwJSGlFKUaBVN6ANoFkdAlIrqdc0Lt3V9lChoBmgJaA9DCOyIQzYQEWxAlIaUUpRoFU1CAmgWR0CUkhbZezD5dX2UKGgGaAloD0MIf/s6cM7uTcCUhpRSlGgVTegDaBZHQJSfIaOxSpB1fZQoaAZoCWgPQwisG++OjA1BwJSGlFKUaBVN6ANoFkdAlLDB8YyftnV9lChoBmgJaA9DCNbIrrSMokLAlIaUUpRoFU2yAWgWR0CUtZslb/wRdX2UKGgGaAloD0MI0erkDMVfRsCUhpRSlGgVTegDaBZHQJTDp+2E0zl1fZQoaAZoCWgPQwgjaw2l9iI3wJSGlFKUaBVN6ANoFkdAlNZk1dgOSXV9lChoBmgJaA9DCOfEHtpH8mlAlIaUUpRoFU1uA2gWR0CU4kzGgi/xdX2UKGgGaAloD0MIndoZpjbRbUCUhpRSlGgVTfoBaBZHQJTo7GGVRk51fZQoaAZoCWgPQwhq2sU00wk0wJSGlFKUaBVN6ANoFkdAlPpc495hSnV9lChoBmgJaA9DCKM883LY/TrAlIaUUpRoFU3oA2gWR0CVBlyZa3ZxdX2UKGgGaAloD0MIIUCGjh2kUMCUhpRSlGgVTegDaBZHQJUSiDL8rI51fZQoaAZoCWgPQwimKJfGr/9tQJSGlFKUaBVNKQJoFkdAlRhKtozvZ3V9lChoBmgJaA9DCP/PYb68iEjAlIaUUpRoFU3oA2gWR0CVKZSKFZgYdX2UKGgGaAloD0MIAySaQBGHNkCUhpRSlGgVTegDaBZHQJU67H5rP+p1fZQoaAZoCWgPQwgDCYof4yxsQJSGlFKUaBVNuwJoFkdAlULVXiiqQ3V9lChoBmgJaA9DCL+1EyWhoXBAlIaUUpRoFU14AWgWR0CVRpqBVdX1dX2UKGgGaAloD0MIBVCMLJnhakCUhpRSlGgVTXcCaBZHQJVPPSMLncN1fZQoaAZoCWgPQwhSSZ2ApjZiQJSGlFKUaBVN/AJoFkdAlVpezt1IRXV9lChoBmgJaA9DCFIQPL69BmlAlIaUUpRoFU2oAmgWR0CVYoJdB0IUdX2UKGgGaAloD0MIzEHQ0ao2AcCUhpRSlGgVTegDaBZHQJVzBCHARCh1fZQoaAZoCWgPQwjyXUpdsq9kwJSGlFKUaBVNJQNoFkdAlXwIzN2TxHV9lChoBmgJaA9DCNWuCWkN8WRAlIaUUpRoFU1DAmgWR0CVgnMXaakRdX2UKGgGaAloD0MIdvwXCALARECUhpRSlGgVTegDaBZHQJWQjvfCQ911fZQoaAZoCWgPQwiitaLN8bNtQJSGlFKUaBVNhAFoFkdAlZTOAiFCcHV9lChoBmgJaA9DCG8sKAxKbWZAlIaUUpRoFU2VAmgWR0CVnVSpBHCodX2UKGgGaAloD0MI+1xtxX7OYkCUhpRSlGgVTfMCaBZHQJWnrpX6qKh1fZQoaAZoCWgPQwjxuRPsvwhnQJSGlFKUaBVNKgJoFkdAla3ihFmWdHV9lChoBmgJaA9DCDY7Un3nn0JAlIaUUpRoFU3oA2gWR0CVubRChN/OdX2UKGgGaAloD0MILH5TWKnsPcCUhpRSlGgVTegDaBZHQJXF6SSvC/J1fZQoaAZoCWgPQwiJ0Ag2rts2wJSGlFKUaBVN6ANoFkdAldTyxeLNwHV9lChoBmgJaA9DCOQR3EjZHkjAlIaUUpRoFU3GAmgWR0CV3cq/M4cWdX2UKGgGaAloD0MI0NOAQdIn/7+UhpRSlGgVTegDaBZHQJXsgMZxaPl1fZQoaAZoCWgPQwg//WfNj8s4wJSGlFKUaBVN6ANoFkdAlfoDXe3x4XV9lChoBmgJaA9DCDY//tKili/AlIaUUpRoFU3oA2gWR0CWB/5LAYYSdX2UKGgGaAloD0MISfWdX9RDckCUhpRSlGgVTUgBaBZHQJYLQW8AaNx1fZQoaAZoCWgPQwgpWrkXGKlpQJSGlFKUaBVNYwJoFkdAlhLcchkiEHV9lChoBmgJaA9DCHBbW3he6FbAlIaUUpRoFU3oA2gWR0CWIXhoduHfdX2UKGgGaAloD0MIMqt3uB0QQsCUhpRSlGgVTegDaBZHQJYtCgIyCWh1fZQoaAZoCWgPQwjAsPz5NmtvQJSGlFKUaBVNwwFoFkdAljGelwcYInV9lChoBmgJaA9DCPNaCd0l8e6/lIaUUpRoFU3oA2gWR0CWQRVjI7vHdX2UKGgGaAloD0MIzEHQ0Sp+akCUhpRSlGgVTXoCaBZHQJZIO28Zk091fZQoaAZoCWgPQwhLdJZZBKlrQJSGlFKUaBVN/QFoFkdAlk48XenAI3V9lChoBmgJaA9DCJePpKSHb03AlIaUUpRoFU3oA2gWR0CWXvU83dbgdX2UKGgGaAloD0MI2o6pu7J0a0CUhpRSlGgVTTsCaBZHQJZmcK3NLUV1fZQoaAZoCWgPQwgWaeId4ANCwJSGlFKUaBVN6ANoFkdAlnXFg6U7jnV9lChoBmgJaA9DCA5o6Qq2rTzAlIaUUpRoFU3oA2gWR0CWhhb/wRXfdX2UKGgGaAloD0MIYabtX1nmUcCUhpRSlGgVTegDaBZHQJaUkZsKsuF1fZQoaAZoCWgPQwhe9utOd64tQJSGlFKUaBVN6ANoFkdAlqHG2b5M13V9lChoBmgJaA9DCAMIH0q06DHAlIaUUpRoFU3oA2gWR0CWsRrIo3JgdX2UKGgGaAloD0MIEoWWdf++SMCUhpRSlGgVTegDaBZHQJbCDDEWIoF1fZQoaAZoCWgPQwh5c7hWewFmQJSGlFKUaBVNLgFoFkdAlsUdmYjSonV9lChoBmgJaA9DCAXAeAYNPUvAlIaUUpRoFU3oA2gWR0CW0GtQsPJ8dX2UKGgGaAloD0MIgPPixFfZQ8CUhpRSlGgVTegDaBZHQJbiv1M/QjV1fZQoaAZoCWgPQwguOe6UDnpFwJSGlFKUaBVN6ANoFkdAlvC2BreqJnV9lChoBmgJaA9DCAbxgR3/YT/AlIaUUpRoFU3oA2gWR0CXAAOMVDa5dX2UKGgGaAloD0MIsKvJU9ZcbECUhpRSlGgVTe4CaBZHQJcJS+49X911fZQoaAZoCWgPQwhvKlJhbJ0/wJSGlFKUaBVN6ANoFkdAlxd6gRK6F3V9lChoBmgJaA9DCMdjBirjAWBAlIaUUpRoFU3oA2gWR0CXI2cs189fdX2UKGgGaAloD0MI+FEN+z1tOMCUhpRSlGgVTUABaBZHQJcmoBo24ut1fZQoaAZoCWgPQwhD44kgzhpxQJSGlFKUaBVNAQNoFkdAly84N3GGVXV9lChoBmgJaA9DCDSAt0ACjXBAlIaUUpRoFU0KAWgWR0CXMbyjYZl4dX2UKGgGaAloD0MIJ2a9GMopN8CUhpRSlGgVTegDaBZHQJc9qYfGMn91fZQoaAZoCWgPQwja5PBJJ1hEwJSGlFKUaBVN6ANoFkdAl05GdmQKbHV9lChoBmgJaA9DCPrS25+LbjbAlIaUUpRoFU3oA2gWR0CXW7Ra5f+kdX2UKGgGaAloD0MIBJDaxMnlLcCUhpRSlGgVTegDaBZHQJdrO1RceKd1fZQoaAZoCWgPQwi05VyKq6o2QJSGlFKUaBVN6ANoFkdAl3leaz/p+3V9lChoBmgJaA9DCFwf1hu10ifAlIaUUpRoFU3oA2gWR0CXil3Dej20dX2UKGgGaAloD0MICqNZ2T4cK8CUhpRSlGgVTegDaBZHQJeYoCCBf8d1fZQoaAZoCWgPQwis/Z3t0aNOwJSGlFKUaBVN6ANoFkdAl6aHNs3yZ3V9lChoBmgJaA9DCO4iTFEutTVAlIaUUpRoFU3oA2gWR0CXt6G+9Jz1dX2UKGgGaAloD0MIH54lyAiYSsCUhpRSlGgVTegDaBZHQJfF/S6UaAF1fZQoaAZoCWgPQwjO4sXCEKktwJSGlFKUaBVN6ANoFkdAl9jZNKyv93V9lChoBmgJaA9DCOI5W0BorU3AlIaUUpRoFU3oA2gWR0CX5Ip/wy6+dX2UKGgGaAloD0MIRuo9ldOuR8CUhpRSlGgVTegDaBZHQJf0xRVIZqF1fZQoaAZoCWgPQwgteNFXkCdTwJSGlFKUaBVN6ANoFkdAmACkvboKUnV9lChoBmgJaA9DCEkRGVbx0kTAlIaUUpRoFU3oA2gWR0CYDKg13t8edX2UKGgGaAloD0MIVMkAUMVPckCUhpRSlGgVTRUBaBZHQJgPZK8L8aZ1fZQoaAZoCWgPQwjsMCb9vSQsQJSGlFKUaBVN6ANoFkdAmB79q59Vm3V9lChoBmgJaA9DCPZ/DvPlXFbAlIaUUpRoFU3oA2gWR0CYKg56dDpkdX2UKGgGaAloD0MI3eo56X2LTsCUhpRSlGgVTegDaBZHQJg1/3j+7191fZQoaAZoCWgPQwiKHvgYrAZAwJSGlFKUaBVN6ANoFkdAmEXHd43WF3V9lChoBmgJaA9DCJ8hHLPsV0/AlIaUUpRoFU3oA2gWR0CYUQWszVMFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 112500, "buffer_size": 1000000, "batch_size": 32, "learning_starts": 50000, "tau": 1.0, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7f3df554db90>", "add": "<function ReplayBuffer.add at 0x7f3df554dc20>", "sample": "<function ReplayBuffer.sample at 0x7f3df554dcb0>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7f3df554dd40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3df554a1b0>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "actor": null, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.1, "target_update_interval": 10000, "_n_calls": 500000, "max_grad_norm": 10, "exploration_rate": 0.05, "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVYwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP6mZmZmZmZqFlFKUaDhHP7mZmZmZmZqFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}