Update config/baseline_config.py
Browse files- config/baseline_config.py +26 -13
config/baseline_config.py
CHANGED
@@ -1,39 +1,43 @@
|
|
1 |
"""
|
2 |
-
Configuration for
|
3 |
-
Matches DTAT
|
4 |
"""
|
5 |
|
6 |
class BaselineConfig:
|
7 |
def __init__(self):
|
8 |
# Model architecture (exactly matching DTAT)
|
9 |
self.n_layer = 12
|
10 |
-
self.n_head = 8
|
11 |
-
self.n_embd = 512
|
12 |
self.dropout = 0.1
|
13 |
self.bias = True
|
14 |
|
15 |
# Sequence parameters
|
16 |
-
self.block_size = 1024
|
17 |
self.vocab_size = 256 # For character-level model
|
18 |
|
19 |
-
# Training parameters
|
20 |
self.learning_rate = 6e-4
|
21 |
-
self.min_lr =
|
22 |
-
self.warmup_iters =
|
23 |
-
self.max_iters =
|
24 |
-
self.weight_decay =
|
25 |
self.beta1 = 0.9
|
26 |
self.beta2 = 0.95
|
27 |
self.grad_clip = 1.0
|
28 |
|
29 |
# Learning rate schedule
|
30 |
self.decay_lr = True
|
31 |
-
self.lr_decay_iters =
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
# Logging
|
34 |
self.log_interval = 10
|
35 |
-
self.eval_interval = 500
|
36 |
-
self.eval_iters = 200
|
37 |
|
38 |
# Mixed precision training
|
39 |
self.mixed_precision = True
|
@@ -46,9 +50,18 @@ class BaselineConfig:
|
|
46 |
# System
|
47 |
self.device = 'cuda'
|
48 |
self.compile = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
def get_config(self):
|
51 |
return self
|
52 |
|
53 |
def get_config():
|
|
|
54 |
return BaselineConfig()
|
|
|
1 |
"""
|
2 |
+
Configuration for Baseline Transformer on enwik8.
|
3 |
+
Matches DTAT's training setup for fair comparison.
|
4 |
"""
|
5 |
|
6 |
class BaselineConfig:
|
7 |
def __init__(self):
|
8 |
# Model architecture (exactly matching DTAT)
|
9 |
self.n_layer = 12
|
10 |
+
self.n_head = 8 # Same as DTAT
|
11 |
+
self.n_embd = 512 # Same as DTAT
|
12 |
self.dropout = 0.1
|
13 |
self.bias = True
|
14 |
|
15 |
# Sequence parameters
|
16 |
+
self.block_size = 1024 # Same as DTAT
|
17 |
self.vocab_size = 256 # For character-level model
|
18 |
|
19 |
+
# Training parameters (matched with DTAT)
|
20 |
self.learning_rate = 6e-4
|
21 |
+
self.min_lr = 1e-5 # Lower minimum to allow fine-tuning
|
22 |
+
self.warmup_iters = 367 # 5% of total iterations
|
23 |
+
self.max_iters = 7334 # Exactly 4 epochs with batch_size=24
|
24 |
+
self.weight_decay = 0.1 # Same as DTAT
|
25 |
self.beta1 = 0.9
|
26 |
self.beta2 = 0.95
|
27 |
self.grad_clip = 1.0
|
28 |
|
29 |
# Learning rate schedule
|
30 |
self.decay_lr = True
|
31 |
+
self.lr_decay_iters = 5000 # Same as DTAT
|
32 |
+
|
33 |
+
# Early stopping
|
34 |
+
self.patience = 15 # Same as DTAT
|
35 |
+
self.min_delta = 0.005 # Same as DTAT
|
36 |
+
self.eval_interval = 250 # Same as DTAT
|
37 |
+
self.eval_iters = 200 # Same as DTAT
|
38 |
|
39 |
# Logging
|
40 |
self.log_interval = 10
|
|
|
|
|
41 |
|
42 |
# Mixed precision training
|
43 |
self.mixed_precision = True
|
|
|
50 |
# System
|
51 |
self.device = 'cuda'
|
52 |
self.compile = True
|
53 |
+
|
54 |
+
# Performance optimization
|
55 |
+
self.compile_model = True
|
56 |
+
self.cudnn_benchmark = True
|
57 |
+
|
58 |
+
# Git config for model versioning
|
59 |
+
self.git_name = "Your Name"
|
60 |
+
self.git_email = "[email protected]"
|
61 |
|
62 |
def get_config(self):
|
63 |
return self
|
64 |
|
65 |
def get_config():
|
66 |
+
"""Helper function to get config instance."""
|
67 |
return BaselineConfig()
|