|
import math |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
|
|
class HierarchicalPositionEncoding(nn.Module): |
|
""" |
|
Hierarchical Position Encoding that captures position information at multiple scales: |
|
- Fine-grained local position (token level) |
|
- Medium-scale position (segment level) |
|
- Coarse-grained position (document level) |
|
""" |
|
def __init__(self, d_model, max_len=1024, base=10000): |
|
super().__init__() |
|
self.d_model = d_model |
|
self.max_len = max_len |
|
self.base = base |
|
|
|
|
|
self.local_dim = d_model // 2 |
|
self.segment_dim = d_model // 4 |
|
self.doc_dim = d_model - self.local_dim - self.segment_dim |
|
|
|
|
|
self.register_buffer('local_pe', self._create_pe(max_len, self.local_dim)) |
|
self.register_buffer('segment_pe', self._create_pe(max_len//8, self.segment_dim)) |
|
self.register_buffer('doc_pe', self._create_pe(max_len//32, self.doc_dim)) |
|
|
|
def _create_pe(self, max_len, d_model): |
|
pe = torch.zeros(max_len, d_model) |
|
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) |
|
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(self.base) / d_model)) |
|
pe[:, 0::2] = torch.sin(position * div_term) |
|
pe[:, 1::2] = torch.cos(position * div_term) |
|
return pe.unsqueeze(0) |
|
|
|
def forward(self, x): |
|
B, T, C = x.shape |
|
|
|
|
|
local_pos = self.local_pe[:, :T, :] |
|
segment_pos = self.segment_pe[:, :(T//8), :].repeat_interleave(8, dim=1)[:, :T, :] |
|
doc_pos = self.doc_pe[:, :(T//32), :].repeat_interleave(32, dim=1)[:, :T, :] |
|
|
|
|
|
pos_encoding = torch.cat([local_pos, segment_pos, doc_pos], dim=-1) |
|
return pos_encoding |
|
|
|
class MultiScaleAttention(nn.Module): |
|
""" |
|
Multi-scale attention mechanism that processes information at different temporal scales |
|
""" |
|
def __init__(self, config): |
|
super().__init__() |
|
assert config.n_embd % config.n_head == 0 |
|
|
|
|
|
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) |
|
|
|
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) |
|
|
|
self.attn_dropout = nn.Dropout(config.dropout) |
|
self.resid_dropout = nn.Dropout(config.dropout) |
|
self.n_head = config.n_head |
|
self.n_embd = config.n_embd |
|
self.dropout = config.dropout |
|
|
|
def forward(self, x): |
|
B, T, C = x.shape |
|
|
|
|
|
q, k, v = self.c_attn(x).split(self.n_embd, dim=2) |
|
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
|
|
|
|
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) |
|
att = F.softmax(att, dim=-1) |
|
att = self.attn_dropout(att) |
|
y = att @ v |
|
y = y.transpose(1, 2).contiguous().view(B, T, C) |
|
|
|
|
|
y = self.resid_dropout(self.c_proj(y)) |
|
return y |
|
|
|
class Block(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.ln_1 = nn.LayerNorm(config.n_embd) |
|
self.attn = MultiScaleAttention(config) |
|
self.ln_2 = nn.LayerNorm(config.n_embd) |
|
self.mlp = nn.ModuleDict(dict( |
|
c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias), |
|
c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias), |
|
act = nn.GELU(), |
|
dropout = nn.Dropout(config.dropout), |
|
)) |
|
m = self.mlp |
|
self.mlpf = lambda x: m.dropout(m.c_proj(m.act(m.c_fc(x)))) |
|
|
|
def forward(self, x): |
|
x = x + self.attn(self.ln_1(x)) |
|
x = x + self.mlpf(self.ln_2(x)) |
|
return x |
|
|
|
class GPTModified(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
assert config.vocab_size is not None |
|
assert config.block_size is not None |
|
self.config = config |
|
|
|
self.transformer = nn.ModuleDict(dict( |
|
wte = nn.Embedding(config.vocab_size, config.n_embd), |
|
hpe = HierarchicalPositionEncoding(config.n_embd, config.block_size), |
|
drop = nn.Dropout(config.dropout), |
|
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), |
|
ln_f = nn.LayerNorm(config.n_embd), |
|
)) |
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) |
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
for pn, p in self.named_parameters(): |
|
if pn.endswith('c_proj.weight'): |
|
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer)) |
|
|
|
|
|
print("number of parameters: %.2fM" % (self.get_num_params()/1e6,)) |
|
|
|
def get_num_params(self, non_embedding=True): |
|
n_params = sum(p.numel() for p in self.parameters()) |
|
if non_embedding: |
|
n_params -= self.transformer.wte.weight.numel() |
|
return n_params |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, nn.Linear): |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) |
|
if module.bias is not None: |
|
torch.nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.Embedding): |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) |
|
|
|
def forward(self, idx, targets=None): |
|
device = idx.device |
|
b, t = idx.size() |
|
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}" |
|
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) |
|
|
|
|
|
tok_emb = self.transformer.wte(idx) |
|
pos_emb = self.transformer.hpe(tok_emb) |
|
x = self.transformer.drop(tok_emb + pos_emb) |
|
for block in self.transformer.h: |
|
x = block(x) |
|
x = self.transformer.ln_f(x) |
|
logits = self.lm_head(x) |
|
|
|
|
|
loss = None |
|
if targets is not None: |
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) |
|
|
|
return logits, loss |
|
|
|
@torch.no_grad() |
|
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None): |
|
for _ in range(max_new_tokens): |
|
|
|
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:] |
|
|
|
logits, _ = self(idx_cond) |
|
|
|
logits = logits[:, -1, :] / temperature |
|
|
|
if top_k is not None: |
|
v, _ = torch.topk(logits, min(top_k, logits.size(-1))) |
|
logits[logits < v[:, [-1]]] = -float('Inf') |
|
|
|
probs = F.softmax(logits, dim=-1) |
|
|
|
idx_next = torch.multinomial(probs, num_samples=1) |
|
|
|
idx = torch.cat((idx, idx_next), dim=1) |
|
|
|
return idx |
|
|