llm / model_modified.py
eyad-silx
Update repository
d278d9d
import math
import torch
import torch.nn as nn
from torch.nn import functional as F
class HierarchicalPositionEncoding(nn.Module):
"""
Hierarchical Position Encoding that captures position information at multiple scales:
- Fine-grained local position (token level)
- Medium-scale position (segment level)
- Coarse-grained position (document level)
"""
def __init__(self, d_model, max_len=1024, base=10000):
super().__init__()
self.d_model = d_model
self.max_len = max_len
self.base = base
# Split embedding dimensions for different scales
self.local_dim = d_model // 2
self.segment_dim = d_model // 4
self.doc_dim = d_model - self.local_dim - self.segment_dim
# Create position encodings for different scales
self.register_buffer('local_pe', self._create_pe(max_len, self.local_dim))
self.register_buffer('segment_pe', self._create_pe(max_len//8, self.segment_dim))
self.register_buffer('doc_pe', self._create_pe(max_len//32, self.doc_dim))
def _create_pe(self, max_len, d_model):
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(self.base) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
return pe.unsqueeze(0)
def forward(self, x):
B, T, C = x.shape
# Get positional encodings at different scales
local_pos = self.local_pe[:, :T, :]
segment_pos = self.segment_pe[:, :(T//8), :].repeat_interleave(8, dim=1)[:, :T, :]
doc_pos = self.doc_pe[:, :(T//32), :].repeat_interleave(32, dim=1)[:, :T, :]
# Combine all scales
pos_encoding = torch.cat([local_pos, segment_pos, doc_pos], dim=-1)
return pos_encoding
class MultiScaleAttention(nn.Module):
"""
Multi-scale attention mechanism that processes information at different temporal scales
"""
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
# key, query, value projections for all heads, but in a batch
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
# output projection
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
# regularization
self.attn_dropout = nn.Dropout(config.dropout)
self.resid_dropout = nn.Dropout(config.dropout)
self.n_head = config.n_head
self.n_embd = config.n_embd
self.dropout = config.dropout
def forward(self, x):
B, T, C = x.shape # batch size, sequence length, embedding dimensionality
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = F.softmax(att, dim=-1)
att = self.attn_dropout(att)
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
# output projection
y = self.resid_dropout(self.c_proj(y))
return y
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = MultiScaleAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = nn.ModuleDict(dict(
c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias),
c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias),
act = nn.GELU(),
dropout = nn.Dropout(config.dropout),
))
m = self.mlp
self.mlpf = lambda x: m.dropout(m.c_proj(m.act(m.c_fc(x))))
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlpf(self.ln_2(x))
return x
class GPTModified(nn.Module):
def __init__(self, config):
super().__init__()
assert config.vocab_size is not None
assert config.block_size is not None
self.config = config
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
hpe = HierarchicalPositionEncoding(config.n_embd, config.block_size),
drop = nn.Dropout(config.dropout),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f = nn.LayerNorm(config.n_embd),
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# Initialize weights
self.apply(self._init_weights)
# Apply special scaled init to the residual projections, per GPT-2 paper
for pn, p in self.named_parameters():
if pn.endswith('c_proj.weight'):
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
# Report number of parameters
print("number of parameters: %.2fM" % (self.get_num_params()/1e6,))
def get_num_params(self, non_embedding=True):
n_params = sum(p.numel() for p in self.parameters())
if non_embedding:
n_params -= self.transformer.wte.weight.numel()
return n_params
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
device = idx.device
b, t = idx.size()
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) # shape (1, t)
# Forward pass
tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
pos_emb = self.transformer.hpe(tok_emb) # position embeddings of shape (b, t, n_embd)
x = self.transformer.drop(tok_emb + pos_emb)
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
logits = self.lm_head(x)
# If we are given some desired targets also calculate the loss
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
return logits, loss
@torch.no_grad()
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
for _ in range(max_new_tokens):
# If the sequence context is growing too long we must crop it at block_size
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
# Forward the model to get the logits for the index in the sequence
logits, _ = self(idx_cond)
# Pluck the logits at the final step and scale by desired temperature
logits = logits[:, -1, :] / temperature
# Optionally crop the logits to only the top k options
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float('Inf')
# Apply softmax to convert logits to (normalized) probabilities
probs = F.softmax(logits, dim=-1)
# Sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1)
# Append sampled index to the running sequence and continue
idx = torch.cat((idx, idx_next), dim=1)
return idx