llm / model_dtat.py
eyad-silx's picture
Update model_dtat.py
b95e4a2 verified
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class TokenImportanceNetwork(nn.Module):
"""
Computes importance scores for each token based on:
1. Local context patterns
2. Token frequency
3. Position information
"""
def __init__(self, config):
super().__init__()
self.n_embd = config.n_embd
# Local context processing
self.context_net = nn.Sequential(
nn.Conv1d(config.n_embd, config.n_embd, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv1d(config.n_embd, config.n_embd, kernel_size=1)
)
# Frequency awareness
self.freq_embedding = nn.Embedding(256, config.n_embd)
# Position awareness
self.pos_embedding = nn.Embedding(config.block_size, config.n_embd)
# Feature fusion
self.fusion = nn.Sequential(
nn.LayerNorm(config.n_embd * 3),
nn.Linear(config.n_embd * 3, config.n_embd),
nn.Dropout(config.importance_dropout),
nn.GELU(),
nn.Linear(config.n_embd, 1),
nn.Dropout(config.importance_dropout),
nn.Sigmoid()
)
def forward(self, x, freq_table, positions):
B, T, C = x.shape
# Ensure inputs are on the correct device
freq_table = freq_table.to(x.device)
positions = positions.to(x.device)
# Process local context
x_local = self.context_net(x.transpose(1, 2)) # [B, C, T]
x_local = x_local.transpose(1, 2) # [B, T, C]
# Get embeddings
freq_emb = self.freq_embedding(freq_table) # [B, T, C]
pos_emb = self.pos_embedding(positions) # [B, T, C]
# Concatenate features
combined = torch.cat([x_local, freq_emb, pos_emb], dim=-1) # [B, T, 3C]
# Compute importance scores
importance = self.fusion(combined) # [B, T, 1]
return importance
class SparseDenseAttention(nn.Module):
"""
Ultra memory-efficient hybrid attention using:
- Flash attention style computation
- Gradient checkpointing
- Aggressive memory management
"""
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
self.n_head = config.n_head
self.n_embd = config.n_embd
self.head_size = config.n_embd // config.n_head
self.dropout = config.dropout
# Key, Query, Value projections for all heads
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
# Dropouts
self.attn_dropout = nn.Dropout(config.dropout)
self.resid_dropout = nn.Dropout(config.dropout)
# Sparse attention parameters
self.sparse_topk = min(
getattr(config, 'sparse_topk', 32),
config.block_size // 4
)
# Initialize scale
self.register_buffer("scale", torch.tensor(1.0 / math.sqrt(self.head_size)))
def _chunk_attention(self, q, k, v, importance_chunk, chunk_size):
B, H, L, D = q.shape
# Process in smaller sub-chunks for memory efficiency
sub_chunk_size = min(chunk_size, 256)
out = torch.zeros_like(v[:, :, :chunk_size])
normalizer = torch.zeros((B, H, chunk_size, 1), device=q.device)
# Process key-value pairs in sub-chunks
for i in range(0, L, sub_chunk_size):
end_idx = min(i + sub_chunk_size, L)
# Get current key/value sub-chunk
k_sub = k[:, :, i:end_idx]
v_sub = v[:, :, i:end_idx]
# Compute attention scores for this sub-chunk
scores = torch.matmul(q[:, :, :chunk_size], k_sub.transpose(-2, -1))
scores = scores * self.scale
# Apply sparse attention based on importance scores
if importance_chunk is not None:
# Properly reshape importance scores for broadcasting
imp = importance_chunk.view(B, 1, -1, 1) # [B, 1, chunk_size, 1]
imp = imp.expand(-1, H, -1, end_idx - i) # [B, H, chunk_size, current_chunk_size]
mask = (imp < 0.5)
if mask.any():
scores_masked = scores.masked_fill(~mask, float('-inf'))
topk_values, _ = torch.topk(
scores_masked,
k=min(self.sparse_topk, scores_masked.size(-1)),
dim=-1,
sorted=False
)
threshold = topk_values[..., -1:]
scores = scores.masked_fill((scores < threshold) & mask, float('-inf'))
# Apply softmax in a memory-efficient way
scores_max = torch.max(scores, dim=-1, keepdim=True)[0]
exp_scores = torch.exp(scores - scores_max)
# Update output and normalization factor
out += torch.matmul(exp_scores, v_sub)
normalizer += exp_scores.sum(dim=-1, keepdim=True)
# Free memory
del scores, exp_scores
torch.cuda.empty_cache()
# Normalize the output
out = out / (normalizer + 1e-6)
return out
def forward(self, x, importance_scores):
B, T, C = x.shape
# Project and split heads
qkv = self.c_attn(x)
q, k, v = qkv.chunk(3, dim=-1)
# Reshape to [B, H, T, D]
q = q.view(B, T, self.n_head, self.head_size).transpose(1, 2)
k = k.view(B, T, self.n_head, self.head_size).transpose(1, 2)
v = v.view(B, T, self.n_head, self.head_size).transpose(1, 2)
# Process attention in chunks
chunk_size = min(T, 128)
num_chunks = (T + chunk_size - 1) // chunk_size
# Initialize output tensor
output = torch.zeros_like(x)
for chunk_idx in range(num_chunks):
start_idx = chunk_idx * chunk_size
end_idx = min(start_idx + chunk_size, T)
# Get importance scores for current chunk
imp_chunk = importance_scores[:, start_idx:end_idx]
# Process chunk with mixed precision
with torch.amp.autocast(device_type='cuda', dtype=torch.float16):
chunk_output = self._chunk_attention(
q[:, :, start_idx:end_idx],
k,
v,
imp_chunk,
end_idx - start_idx
)
# Reshape and store chunk output
chunk_output = chunk_output.transpose(1, 2).contiguous().view(B, end_idx - start_idx, C)
output[:, start_idx:end_idx] = chunk_output
# Free memory
del chunk_output
torch.cuda.empty_cache()
# Final projection and dropout
output = self.resid_dropout(self.c_proj(output))
return output
class Block(nn.Module):
"""
Transformer block with importance-aware processing
"""
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = SparseDenseAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = nn.Sequential(
nn.Linear(config.n_embd, 4 * config.n_embd),
nn.GELU(),
nn.Linear(4 * config.n_embd, config.n_embd),
nn.Dropout(config.dropout),
)
# Feature amplification
self.feature_gate = nn.Sequential(
nn.Linear(config.n_embd, config.n_embd),
nn.Sigmoid()
)
def forward(self, x, importance_scores):
# Self-attention with importance awareness
attn_output = self.attn(self.ln_1(x), importance_scores)
x = x + attn_output
# Feature amplification based on importance
gate = self.feature_gate(x)
x = x * (1 + importance_scores * gate)
# MLP block
x = x + self.mlp(self.ln_2(x))
return x
class DTATTransformer(nn.Module):
"""
Dynamic Token-Aware Transformer (DTAT) for character-level language modeling
"""
def __init__(self, config):
super().__init__()
assert config.vocab_size is not None
assert config.block_size is not None
self.config = config
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
wpe = nn.Embedding(config.block_size, config.n_embd),
drop = nn.Dropout(config.dropout),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f = nn.LayerNorm(config.n_embd)
))
# Token importance network
self.importance_net = TokenImportanceNetwork(config)
# Output head
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# Initialize weights
self.apply(self._init_weights)
# Apply special scaled init to the residual projections, per GPT-2 paper
for pn, p in self.named_parameters():
if pn.endswith('c_proj.weight'):
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
# Report number of parameters
print("number of parameters: %.2fM" % (self.get_num_params()/1e6,))
def get_num_params(self, non_embedding=True):
"""
Return the number of parameters in the model.
For non-embedding count (default), the position embeddings get subtracted.
"""
n_params = sum(p.numel() for p in self.parameters())
if non_embedding:
n_params -= self.transformer.wpe.weight.numel()
return n_params
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
device = idx.device
b, t = idx.size()
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) # shape (1, t)
# Get token embeddings
tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (1, t, n_embd)
x = self.transformer.drop(tok_emb + pos_emb)
# Create frequency table for importance calculation
freq_table = idx.clone() # Use token indices as frequency table for now
# Calculate token importance scores
importance_scores = self.importance_net(x, freq_table, pos.expand(b, -1))
# Forward through transformer blocks
for block in self.transformer.h:
x = block(x, importance_scores)
x = self.transformer.ln_f(x)
# Get logits and loss
logits = self.lm_head(x)
loss = None
if targets is not None:
# Reshape logits to (B*T, vocab_size)
B, T, C = logits.shape
logits = logits.view(B*T, C)
targets = targets.view(B*T)
# Calculate loss directly in BPC instead of nats
loss = F.cross_entropy(logits, targets) / math.log(2)
return logits, loss, importance_scores
@torch.no_grad()
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
"""
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
the sequence max_new_tokens times, feeding the predictions back into the model each time.
Most likely you'll want to make sure to be in model.eval() mode of operation for this.
"""
for _ in range(max_new_tokens):
# if the sequence context is growing too long we must crop it at block_size
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
# forward the model to get the logits for the index in the sequence
logits, _, _ = self(idx_cond)
# pluck the logits at the final step and scale by desired temperature
logits = logits[:, -1, :] / temperature
# optionally crop the logits to only the top k options
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float('Inf')
# apply softmax to convert logits to (normalized) probabilities
probs = F.softmax(logits, dim=-1)
# sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1)
# append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1)
return idx