pasha
commited on
Commit
·
f17b98f
1
Parent(s):
6189dba
Chat and requiremnts added
Browse files- .gitignore +1 -0
- chat_transformers.py +158 -0
- requirements.txt +5 -0
.gitignore
CHANGED
@@ -1 +1,2 @@
|
|
1 |
/.idea/
|
|
|
|
1 |
/.idea/
|
2 |
+
/venv/
|
chat_transformers.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import fire
|
2 |
+
from typing import List, Dict
|
3 |
+
import torch
|
4 |
+
from peft import PeftModel
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, BitsAndBytesConfig
|
6 |
+
|
7 |
+
MODEL_BASE = "t-tech/T-lite-it-1.0"
|
8 |
+
MODEL_ADAPTER = "evilfreelancer/T-lite-it-1.0_lora_thinking"
|
9 |
+
|
10 |
+
SYSTEM_PROMPT = """\
|
11 |
+
Вы — ИИ-помощник. Отформатируйте свои ответы следующим образом: \
|
12 |
+
<Thought> Ваши мысли (понимание, рассуждения) </Thought> \
|
13 |
+
<Output> Ваш ответ </Output>\
|
14 |
+
"""
|
15 |
+
|
16 |
+
|
17 |
+
class ChatHistory:
|
18 |
+
def __init__(self, history_limit: int = None, system_prompt: str = None):
|
19 |
+
self.history_limit: int | None = history_limit
|
20 |
+
self.system_prompt: str | None = system_prompt
|
21 |
+
self.messages: List[Dict] = []
|
22 |
+
if self.system_prompt is not None:
|
23 |
+
self.messages.append({"role": "system", "content": self.system_prompt})
|
24 |
+
|
25 |
+
def add_message(self, role: str, message: str):
|
26 |
+
self.messages.append({"role": role, "content": message})
|
27 |
+
self.trim_history()
|
28 |
+
|
29 |
+
def add_user_message(self, message: str):
|
30 |
+
self.add_message("user", message)
|
31 |
+
|
32 |
+
def add_assistant_message(self, message: str):
|
33 |
+
self.add_message("assistant", message)
|
34 |
+
|
35 |
+
def add_function_call(self, message: str):
|
36 |
+
self.add_message("function_call", message)
|
37 |
+
|
38 |
+
def add_function_response(self, message: str):
|
39 |
+
self.add_message("function_response", message)
|
40 |
+
|
41 |
+
def trim_history(self):
|
42 |
+
appendix = 0
|
43 |
+
if self.system_prompt is not None:
|
44 |
+
appendix = 1
|
45 |
+
if self.history_limit is not None and len(self.messages) > self.history_limit + appendix:
|
46 |
+
overflow = len(self.messages) - (self.history_limit + appendix)
|
47 |
+
self.messages = [self.messages[0]] + self.messages[overflow + appendix:]
|
48 |
+
|
49 |
+
def get_messages(self) -> list:
|
50 |
+
return self.messages
|
51 |
+
|
52 |
+
|
53 |
+
def generate(model, tokenizer, prompt, generation_config):
|
54 |
+
data = tokenizer(prompt, return_tensors="pt")
|
55 |
+
data = {k: v.to(model.device) for k, v in data.items()}
|
56 |
+
output_ids = model.generate(**data, generation_config=generation_config)[0]
|
57 |
+
output_ids = output_ids[len(data["input_ids"][0]):]
|
58 |
+
output = tokenizer.decode(output_ids, skip_special_tokens=True)
|
59 |
+
return output.strip()
|
60 |
+
|
61 |
+
|
62 |
+
def get_prompt(tokenizer, messages: List[Dict], add_generation_prompt: bool = False):
|
63 |
+
return tokenizer.apply_chat_template(
|
64 |
+
messages,
|
65 |
+
add_special_tokens=False,
|
66 |
+
tokenize=False,
|
67 |
+
add_generation_prompt=add_generation_prompt,
|
68 |
+
)
|
69 |
+
|
70 |
+
|
71 |
+
def chat(
|
72 |
+
history_limit: int = 10,
|
73 |
+
system_prompt: str | None = SYSTEM_PROMPT,
|
74 |
+
max_new_tokens: int = 200,
|
75 |
+
repetition_penalty: float = 1.2,
|
76 |
+
do_sample: bool = True,
|
77 |
+
temperature: float = 0.5,
|
78 |
+
top_p: float = 0.6,
|
79 |
+
top_k: int = 40,
|
80 |
+
):
|
81 |
+
#
|
82 |
+
# Tokenizer preparation
|
83 |
+
#
|
84 |
+
|
85 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_BASE)
|
86 |
+
|
87 |
+
#
|
88 |
+
# Model preparation
|
89 |
+
#
|
90 |
+
|
91 |
+
# Quantization config
|
92 |
+
quantization_config = BitsAndBytesConfig(
|
93 |
+
load_in_4bit=True,
|
94 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
95 |
+
bnb_4bit_quant_type="nf4",
|
96 |
+
bnb_4bit_use_double_quant=True
|
97 |
+
)
|
98 |
+
|
99 |
+
# Generator config
|
100 |
+
generation_config = GenerationConfig.from_pretrained(MODEL_ADAPTER)
|
101 |
+
generation_config.max_new_tokens = max_new_tokens
|
102 |
+
generation_config.repetition_penalty = repetition_penalty
|
103 |
+
generation_config.do_sample = do_sample
|
104 |
+
generation_config.temperature = temperature
|
105 |
+
generation_config.top_p = top_p
|
106 |
+
generation_config.top_k = top_k
|
107 |
+
|
108 |
+
# Read model from folder with trained checkpoints
|
109 |
+
model = AutoModelForCausalLM.from_pretrained(
|
110 |
+
MODEL_BASE,
|
111 |
+
generation_config=generation_config,
|
112 |
+
quantization_config=quantization_config,
|
113 |
+
torch_dtype=torch.bfloat16,
|
114 |
+
attn_implementation=None
|
115 |
+
)
|
116 |
+
|
117 |
+
# If we've trained a LoRA adapter
|
118 |
+
model = PeftModel.from_pretrained(
|
119 |
+
model=model,
|
120 |
+
model_id=MODEL_ADAPTER,
|
121 |
+
torch_dtype=torch.bfloat16,
|
122 |
+
)
|
123 |
+
|
124 |
+
#
|
125 |
+
# Chat loop
|
126 |
+
#
|
127 |
+
|
128 |
+
# Start chat loop
|
129 |
+
chat_history = ChatHistory(history_limit, system_prompt)
|
130 |
+
while True:
|
131 |
+
user_message = input("User: ")
|
132 |
+
|
133 |
+
# Reset chat command
|
134 |
+
if user_message.strip() == "/reset":
|
135 |
+
chat_history = ChatHistory(history_limit, system_prompt)
|
136 |
+
print("History reset completed!")
|
137 |
+
continue
|
138 |
+
|
139 |
+
# Skip empty messages from user
|
140 |
+
if user_message.strip() == "":
|
141 |
+
continue
|
142 |
+
|
143 |
+
# Add user message to chat history
|
144 |
+
chat_history.add_user_message(user_message)
|
145 |
+
|
146 |
+
# Get list of messages
|
147 |
+
prompt = get_prompt(tokenizer, chat_history.get_messages(), True)
|
148 |
+
|
149 |
+
# Generate response
|
150 |
+
output = generate(model, tokenizer, prompt, generation_config)
|
151 |
+
|
152 |
+
# Save response to chat history as assistant's message
|
153 |
+
chat_history.add_assistant_message(output)
|
154 |
+
print("Assistant:", output)
|
155 |
+
|
156 |
+
|
157 |
+
if __name__ == "__main__":
|
158 |
+
fire.Fire(chat)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pyyaml>=6.0.2
|
2 |
+
fire>=0.7.0
|
3 |
+
torch>=2.5.1
|
4 |
+
transformers>=4.47.1
|
5 |
+
peft>=0.14.0
|