Update README.md
Browse files
README.md
CHANGED
@@ -12,4 +12,122 @@ pipeline_tag: text-generation
|
|
12 |
|
13 |
# Model Card for Kurtis-E1.1-Qwen2.5-3B-Instruct
|
14 |
|
15 |
-
Kurtis E1.1 fine-tuned with [flower](https://flower.ai/)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Model Card for Kurtis-E1.1-Qwen2.5-3B-Instruct
|
14 |
|
15 |
+
Kurtis E1.1 fine-tuned with [flower](https://flower.ai/)
|
16 |
+
|
17 |
+
## Eval Results
|
18 |
+
|
19 |
+
Evaluation tasks were performed with the [LM Evaluation Harness] (https://github.com/EleutherAI/lm-evaluation-harness) on an NVIDIA A40.
|
20 |
+
|
21 |
+
|
22 |
+
### hellaswag
|
23 |
+
|
24 |
+
```
|
25 |
+
lm_eval --model hf --model_args pretrained=ethicalabs/Kurtis-E1.1-Qwen2.5-3B-Instruct --tasks hellaswag --device cuda:0 --batch_size 8
|
26 |
+
```
|
27 |
+
|
28 |
+
| Tasks |Version|Filter|n-shot| Metric | |Value | |Stderr|
|
29 |
+
|---------|------:|------|-----:|--------|---|-----:|---|-----:|
|
30 |
+
|hellaswag| 1|none | 0|acc |↑ |0.5555|± |0.0050|
|
31 |
+
| | |none | 0|acc_norm|↑ |0.7412|± |0.0044|
|
32 |
+
|
33 |
+
### arc_easy
|
34 |
+
|
35 |
+
```
|
36 |
+
lm_eval --model hf --model_args pretrained=ethicalabs/Kurtis-E1.1-Qwen2.5-3B-Instruct --tasks arc_easy --device cuda:0 --batch_size 8
|
37 |
+
```
|
38 |
+
|
39 |
+
| Tasks |Version|Filter|n-shot| Metric | |Value | |Stderr|
|
40 |
+
|--------|------:|------|-----:|--------|---|-----:|---|-----:|
|
41 |
+
|arc_easy| 1|none | 0|acc |↑ |0.7710|± |0.0086|
|
42 |
+
| | |none | 0|acc_norm|↑ |0.6789|± |0.0096|
|
43 |
+
|
44 |
+
|
45 |
+
### arc_challenge
|
46 |
+
|
47 |
+
```
|
48 |
+
lm_eval --model hf --model_args pretrained=ethicalabs/Kurtis-E1.1-Qwen2.5-3B-Instruct --tasks arc_challenge --device cuda:0 --batch_size 8
|
49 |
+
```
|
50 |
+
|
51 |
+
| Tasks |Version|Filter|n-shot| Metric | |Value| |Stderr|
|
52 |
+
|-------------|------:|------|-----:|--------|---|----:|---|-----:|
|
53 |
+
|arc_challenge| 1|none | 0|acc |↑ |0.436|± |0.0145|
|
54 |
+
| | |none | 0|acc_norm|↑ |0.448|± |0.0145|
|
55 |
+
|
56 |
+
### mmlu
|
57 |
+
|
58 |
+
```
|
59 |
+
lm_eval --model hf --model_args pretrained=ethicalabs/Kurtis-E1.1-Qwen2.5-3B-Instruct --tasks mmlu --device cuda:0 --batch_size 8
|
60 |
+
```
|
61 |
+
|
62 |
+
| Tasks |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
63 |
+
|---------------------------------------|------:|------|-----:|------|---|-----:|---|-----:|
|
64 |
+
|mmlu | 2|none | |acc |↑ |0.6522|± |0.0038|
|
65 |
+
| - humanities | 2|none | |acc |↑ |0.5734|± |0.0066|
|
66 |
+
| - formal_logic | 1|none | 0|acc |↑ |0.4603|± |0.0446|
|
67 |
+
| - high_school_european_history | 1|none | 0|acc |↑ |0.7939|± |0.0316|
|
68 |
+
| - high_school_us_history | 1|none | 0|acc |↑ |0.8333|± |0.0262|
|
69 |
+
| - high_school_world_history | 1|none | 0|acc |↑ |0.8397|± |0.0239|
|
70 |
+
| - international_law | 1|none | 0|acc |↑ |0.7769|± |0.0380|
|
71 |
+
| - jurisprudence | 1|none | 0|acc |↑ |0.7963|± |0.0389|
|
72 |
+
| - logical_fallacies | 1|none | 0|acc |↑ |0.7975|± |0.0316|
|
73 |
+
| - moral_disputes | 1|none | 0|acc |↑ |0.6850|± |0.0250|
|
74 |
+
| - moral_scenarios | 1|none | 0|acc |↑ |0.2905|± |0.0152|
|
75 |
+
| - philosophy | 1|none | 0|acc |↑ |0.7106|± |0.0258|
|
76 |
+
| - prehistory | 1|none | 0|acc |↑ |0.7438|± |0.0243|
|
77 |
+
| - professional_law | 1|none | 0|acc |↑ |0.4759|± |0.0128|
|
78 |
+
| - world_religions | 1|none | 0|acc |↑ |0.8246|± |0.0292|
|
79 |
+
| - other | 2|none | |acc |↑ |0.7087|± |0.0079|
|
80 |
+
| - business_ethics | 1|none | 0|acc |↑ |0.7300|± |0.0446|
|
81 |
+
| - clinical_knowledge | 1|none | 0|acc |↑ |0.7321|± |0.0273|
|
82 |
+
| - college_medicine | 1|none | 0|acc |↑ |0.6705|± |0.0358|
|
83 |
+
| - global_facts | 1|none | 0|acc |↑ |0.3900|± |0.0490|
|
84 |
+
| - human_aging | 1|none | 0|acc |↑ |0.7130|± |0.0304|
|
85 |
+
| - management | 1|none | 0|acc |↑ |0.7961|± |0.0399|
|
86 |
+
| - marketing | 1|none | 0|acc |↑ |0.8803|± |0.0213|
|
87 |
+
| - medical_genetics | 1|none | 0|acc |↑ |0.7600|± |0.0429|
|
88 |
+
| - miscellaneous | 1|none | 0|acc |↑ |0.7957|± |0.0144|
|
89 |
+
| - nutrition | 1|none | 0|acc |↑ |0.7353|± |0.0253|
|
90 |
+
| - professional_accounting | 1|none | 0|acc |↑ |0.5426|± |0.0297|
|
91 |
+
| - professional_medicine | 1|none | 0|acc |↑ |0.6434|± |0.0291|
|
92 |
+
| - virology | 1|none | 0|acc |↑ |0.4880|± |0.0389|
|
93 |
+
| - social sciences | 2|none | |acc |↑ |0.7618|± |0.0076|
|
94 |
+
| - econometrics | 1|none | 0|acc |↑ |0.5439|± |0.0469|
|
95 |
+
| - high_school_geography | 1|none | 0|acc |↑ |0.7677|± |0.0301|
|
96 |
+
| - high_school_government_and_politics| 1|none | 0|acc |↑ |0.8860|± |0.0229|
|
97 |
+
| - high_school_macroeconomics | 1|none | 0|acc |↑ |0.6949|± |0.0233|
|
98 |
+
| - high_school_microeconomics | 1|none | 0|acc |↑ |0.7773|± |0.0270|
|
99 |
+
| - high_school_psychology | 1|none | 0|acc |↑ |0.8477|± |0.0154|
|
100 |
+
| - human_sexuality | 1|none | 0|acc |↑ |0.7786|± |0.0364|
|
101 |
+
| - professional_psychology | 1|none | 0|acc |↑ |0.7075|± |0.0184|
|
102 |
+
| - public_relations | 1|none | 0|acc |↑ |0.6818|± |0.0446|
|
103 |
+
| - security_studies | 1|none | 0|acc |↑ |0.7224|± |0.0287|
|
104 |
+
| - sociology | 1|none | 0|acc |↑ |0.8458|± |0.0255|
|
105 |
+
| - us_foreign_policy | 1|none | 0|acc |↑ |0.8400|± |0.0368|
|
106 |
+
| - stem | 2|none | |acc |↑ |0.6070|± |0.0085|
|
107 |
+
| - abstract_algebra | 1|none | 0|acc |↑ |0.4700|± |0.0502|
|
108 |
+
| - anatomy | 1|none | 0|acc |↑ |0.6667|± |0.0407|
|
109 |
+
| - astronomy | 1|none | 0|acc |↑ |0.6776|± |0.0380|
|
110 |
+
| - college_biology | 1|none | 0|acc |↑ |0.7222|± |0.0375|
|
111 |
+
| - college_chemistry | 1|none | 0|acc |↑ |0.5000|± |0.0503|
|
112 |
+
| - college_computer_science | 1|none | 0|acc |↑ |0.6000|± |0.0492|
|
113 |
+
| - college_mathematics | 1|none | 0|acc |↑ |0.3400|± |0.0476|
|
114 |
+
| - college_physics | 1|none | 0|acc |↑ |0.4902|± |0.0497|
|
115 |
+
| - computer_security | 1|none | 0|acc |↑ |0.7000|± |0.0461|
|
116 |
+
| - conceptual_physics | 1|none | 0|acc |↑ |0.6468|± |0.0312|
|
117 |
+
| - electrical_engineering | 1|none | 0|acc |↑ |0.6690|± |0.0392|
|
118 |
+
| - elementary_mathematics | 1|none | 0|acc |↑ |0.5979|± |0.0253|
|
119 |
+
| - high_school_biology | 1|none | 0|acc |↑ |0.8129|± |0.0222|
|
120 |
+
| - high_school_chemistry | 1|none | 0|acc |↑ |0.5813|± |0.0347|
|
121 |
+
| - high_school_computer_science | 1|none | 0|acc |↑ |0.7800|± |0.0416|
|
122 |
+
| - high_school_mathematics | 1|none | 0|acc |↑ |0.5037|± |0.0305|
|
123 |
+
| - high_school_physics | 1|none | 0|acc |↑ |0.4437|± |0.0406|
|
124 |
+
| - high_school_statistics | 1|none | 0|acc |↑ |0.5972|± |0.0334|
|
125 |
+
| - machine_learning | 1|none | 0|acc |↑ |0.4554|± |0.0473|
|
126 |
+
|
127 |
+
| Groups |Version|Filter|n-shot|Metric| |Value | |Stderr|
|
128 |
+
|------------------|------:|------|------|------|---|-----:|---|-----:|
|
129 |
+
|mmlu | 2|none | |acc |↑ |0.6522|± |0.0038|
|
130 |
+
| - humanities | 2|none | |acc |↑ |0.5734|± |0.0066|
|
131 |
+
| - other | 2|none | |acc |↑ |0.7087|± |0.0079|
|
132 |
+
| - social sciences| 2|none | |acc |↑ |0.7618|± |0.0076|
|
133 |
+
| - stem | 2|none | |acc |↑ |0.6070|± |0.0085|
|