--- library_name: transformers license: mit datasets: - ethicalabs/Kurtis-E1-SFT language: - en base_model: ethicalabs/Kurtis-E1.1-Qwen2.5-0.5B-Instruct pipeline_tag: text-generation tags: - mlx --- # ethicalabs/Kurtis-E1.1-Qwen2.5-0.5B-Instruct-mlx-4Bit The Model [ethicalabs/Kurtis-E1.1-Qwen2.5-0.5B-Instruct-mlx-4Bit](https://huggingface.co/ethicalabs/Kurtis-E1.1-Qwen2.5-0.5B-Instruct-mlx-4Bit) was converted to MLX format from [ethicalabs/Kurtis-E1.1-Qwen2.5-0.5B-Instruct](https://huggingface.co/ethicalabs/Kurtis-E1.1-Qwen2.5-0.5B-Instruct) using mlx-lm version **0.22.1**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("ethicalabs/Kurtis-E1.1-Qwen2.5-0.5B-Instruct-mlx-4Bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```