--- license: other datasets: - eswardivi/telugu_instruction_dataset - Telugu-LLM-Labs/teknium_GPTeacher_general_instruct_telugu_filtered_and_romanized - Telugu-LLM-Labs/yahma_alpaca_cleaned_telugu_filtered_and_romanized - tiiuae/falcon-refinedweb - togethercomputer/RedPajama-Data-1T - uonlp/CulturaX - CarperAI/pilev2-dev - bigcode/starcoderdata - DataProvenanceInitiative/Commercially-Verified-Licenses language: - en - te tags: - causal-lm --- ## Stablelm_Telugu Model ### Model Details: - **Model Name:** Stablelm_Telugu (Telugu Romanized) - **Foundational Model:** Stable LM 2 1.6B - **Parameters:** 1.6 Billion - **Pre-training Data:** 2 Trillion Tokens from Multilingual and Code Datasets - **Pre-training Epochs:** 2 ### Fine-Tuning The `Stablelm_Telugu` model was fine-tuned using the `eswardivi/telugu_instruction_dataset`. This dataset is in Alpaca format and comprises translated and transliterated versions of `yahma_alpaca` and `teknium_GPTeacher_general`. The dataset was sourced from [Telugu-LLM-Labs](https://huggingface.co/Telugu-LLM-Labs). Used axolotl for Finetuning,Below is **yml file**
Click to expand ```yml base_model: stabilityai/stablelm-2-1_6b model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer trust_remote_code: true load_in_8bit: true load_in_4bit: false strict: false push_dataset_to_hub: datasets: - path: eswardivi/telugu_instruction_dataset type: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.02 output_dir: ./lora-out adapter: lora lora_model_dir: sequence_len: 2048 sample_packing: true pad_to_sequence_len: true lora_r: 16 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: telugu_llm wandb_entity: wandb_watch: wandb_name: stablelm_1_6 wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 4 num_epochs: 4 optimizer: adamw_bnb_8bit torchdistx_path: lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: false fp16: true tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true gptq_groupsize: s2_attention: gptq_model_v1: warmup_steps: 100 evals_per_epoch: 2 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.1 fsdp: fsdp_config: special_tokens: pad_token: "<|endoftext|>" eos_token: "<|endoftext|>" ```
### Fine-Tuning Data: - **Dataset:** `telugu_instruction_dataset` - **Format:** Alpaca - **Source:** [Here](https://huggingface.co/datasets/eswardivi/telugu_instruction_dataset) For more details on base model, visit the [stablelm-2-1_6b](https://huggingface.co/stabilityai/stablelm-2-1_6b). ## Usage Get started generating text with `Stable LM 2 1.6B` by using the following code snippet: ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("eswardivi/stablelm_telugu", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( "eswardivi/stablelm_telugu", trust_remote_code=True, torch_dtype="auto", ) model.cuda() def create_prompt(instruction: str) -> str: prompt_template = f""" Instruction: {instruction} Response: """ return prompt_template inputs = tokenizer(create_prompt("Naku python Program 1 to 10 count cheyadaniki ivvu"), return_tensors="pt").to(model.device) tokens = model.generate( **inputs, max_new_tokens=1024, temperature=0.65, top_p=0.85, do_sample=True, ) print(tokenizer.decode(tokens[0], skip_special_tokens=True)) ``` #### Output Instruction: Naku python Program 1 to 10 count cheyadaniki ivvu Response: python program 1 to 10 count cheyadaniki ivvabadina code ikkada vundi: ```python count = 0 for n in range(1, 11): count += 1 print("count: ", count) ``` idi python program 1 to 10 count cheyadaniki ivvabadina code, idi 10 nundi 11 varaku 10 sankhyalanu 1 nundi 10 varaku tisukoni 10 sankhyala sankhyalanu leckinchadam dwara prarambhamavuthundi. 1 nundi 10 varaku 10 sankhyalanu tisukoni, 1 nundi 10 varaku 10 sankhyalanu 1 nundi 10 varaku 10 sankhyala sankhyalanu leckinchadam dwara prarambhamavuthundi. ### Run with Flash Attention 2 ⚡️
Click to expand ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("eswardivi/stablelm_telugu", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( "eswardivi/stablelm_telugu", trust_remote_code=True, torch_dtype="auto", attn_implementation="flash_attention_2", ) model.cuda() def create_prompt(instruction: str) -> str: prompt_template = f""" Instruction: {instruction} Response: """ return prompt_template inputs = tokenizer(create_prompt("Naku python Program 1 to 10 count cheyadaniki ivvu"), return_tensors="pt").to(model.device) tokens = model.generate( **inputs, max_new_tokens=1024, temperature=0.65, top_p=0.85, do_sample=True, ) print(tokenizer.decode(tokens[0], skip_special_tokens=True)) ```
## Use and Limitations ### Intended Use The model is intended to be used as a foundational base model for application-specific fine-tuning. Developers must evaluate and fine-tune the model for safe performance in downstream applications. ### Limitations and Bias ​ As a base model, this model may exhibit unreliable, unsafe, or other undesirable behaviors that must be corrected through evaluation and fine-tuning prior to deployment. The pre-training dataset may have contained offensive or inappropriate content, even after applying data cleansing filters, which can be reflected in the model-generated text. We recommend that users exercise caution when using these models in production systems. Do not use the models if they are unsuitable for your application, or for any applications that may cause deliberate or unintentional harm to others. ## How to Cite ```bibtex @misc{StableLM-2-1.6B, url={[https://huggingface.co/stabilityai/stablelm-2-1.6b](https://huggingface.co/stabilityai/stablelm-2-1.6b)}, title={Stable LM 2 1.6B}, author={Stability AI Language Team} } ```