Fizzarolli commited on
Commit
e36a56a
·
verified ·
1 Parent(s): ad2c8ae

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-Small-24B-Instruct-2501
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-Small-24B-Instruct-2501",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": null,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.25,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "k_proj",
27
+ "down_proj",
28
+ "up_proj",
29
+ "gate_proj",
30
+ "v_proj",
31
+ "o_proj",
32
+ "q_proj"
33
+ ],
34
+ "task_type": "CAUSAL_LM",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aec0bd6e50ae99e1dbe43058201c960f149f3db4d7647df3f8c3f642673f5274
3
+ size 369698576
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28873942fefac4c7ec37b425ffd1144251841a5cc07da1572575a1db5eddd000
3
+ size 282220372
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12ad08f01f0334b832e0bf62b794b40f3a58e93c63509926ff3f4c7db523e045
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a84c8515f12823e5ba4b1f9ed931d5fd293193cc4ad935eefe1c21c9b19824e
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,1026 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<unk>",
4
+ "<s>",
5
+ "</s>",
6
+ "[INST]",
7
+ "[/INST]",
8
+ "[AVAILABLE_TOOLS]",
9
+ "[/AVAILABLE_TOOLS]",
10
+ "[TOOL_RESULTS]",
11
+ "[/TOOL_RESULTS]",
12
+ "[TOOL_CALLS]",
13
+ "[IMG]",
14
+ "<pad>",
15
+ "[IMG_BREAK]",
16
+ "[IMG_END]",
17
+ "[PREFIX]",
18
+ "[MIDDLE]",
19
+ "[SUFFIX]",
20
+ "[SYSTEM_PROMPT]",
21
+ "[/SYSTEM_PROMPT]",
22
+ "[TOOL_CONTENT]",
23
+ "<SPECIAL_20>",
24
+ "<SPECIAL_21>",
25
+ "<SPECIAL_22>",
26
+ "<SPECIAL_23>",
27
+ "<SPECIAL_24>",
28
+ "<SPECIAL_25>",
29
+ "<SPECIAL_26>",
30
+ "<SPECIAL_27>",
31
+ "<SPECIAL_28>",
32
+ "<SPECIAL_29>",
33
+ "<SPECIAL_30>",
34
+ "<SPECIAL_31>",
35
+ "<SPECIAL_32>",
36
+ "<SPECIAL_33>",
37
+ "<SPECIAL_34>",
38
+ "<SPECIAL_35>",
39
+ "<SPECIAL_36>",
40
+ "<SPECIAL_37>",
41
+ "<SPECIAL_38>",
42
+ "<SPECIAL_39>",
43
+ "<SPECIAL_40>",
44
+ "<SPECIAL_41>",
45
+ "<SPECIAL_42>",
46
+ "<SPECIAL_43>",
47
+ "<SPECIAL_44>",
48
+ "<SPECIAL_45>",
49
+ "<SPECIAL_46>",
50
+ "<SPECIAL_47>",
51
+ "<SPECIAL_48>",
52
+ "<SPECIAL_49>",
53
+ "<SPECIAL_50>",
54
+ "<SPECIAL_51>",
55
+ "<SPECIAL_52>",
56
+ "<SPECIAL_53>",
57
+ "<SPECIAL_54>",
58
+ "<SPECIAL_55>",
59
+ "<SPECIAL_56>",
60
+ "<SPECIAL_57>",
61
+ "<SPECIAL_58>",
62
+ "<SPECIAL_59>",
63
+ "<SPECIAL_60>",
64
+ "<SPECIAL_61>",
65
+ "<SPECIAL_62>",
66
+ "<SPECIAL_63>",
67
+ "<SPECIAL_64>",
68
+ "<SPECIAL_65>",
69
+ "<SPECIAL_66>",
70
+ "<SPECIAL_67>",
71
+ "<SPECIAL_68>",
72
+ "<SPECIAL_69>",
73
+ "<SPECIAL_70>",
74
+ "<SPECIAL_71>",
75
+ "<SPECIAL_72>",
76
+ "<SPECIAL_73>",
77
+ "<SPECIAL_74>",
78
+ "<SPECIAL_75>",
79
+ "<SPECIAL_76>",
80
+ "<SPECIAL_77>",
81
+ "<SPECIAL_78>",
82
+ "<SPECIAL_79>",
83
+ "<SPECIAL_80>",
84
+ "<SPECIAL_81>",
85
+ "<SPECIAL_82>",
86
+ "<SPECIAL_83>",
87
+ "<SPECIAL_84>",
88
+ "<SPECIAL_85>",
89
+ "<SPECIAL_86>",
90
+ "<SPECIAL_87>",
91
+ "<SPECIAL_88>",
92
+ "<SPECIAL_89>",
93
+ "<SPECIAL_90>",
94
+ "<SPECIAL_91>",
95
+ "<SPECIAL_92>",
96
+ "<SPECIAL_93>",
97
+ "<SPECIAL_94>",
98
+ "<SPECIAL_95>",
99
+ "<SPECIAL_96>",
100
+ "<SPECIAL_97>",
101
+ "<SPECIAL_98>",
102
+ "<SPECIAL_99>",
103
+ "<SPECIAL_100>",
104
+ "<SPECIAL_101>",
105
+ "<SPECIAL_102>",
106
+ "<SPECIAL_103>",
107
+ "<SPECIAL_104>",
108
+ "<SPECIAL_105>",
109
+ "<SPECIAL_106>",
110
+ "<SPECIAL_107>",
111
+ "<SPECIAL_108>",
112
+ "<SPECIAL_109>",
113
+ "<SPECIAL_110>",
114
+ "<SPECIAL_111>",
115
+ "<SPECIAL_112>",
116
+ "<SPECIAL_113>",
117
+ "<SPECIAL_114>",
118
+ "<SPECIAL_115>",
119
+ "<SPECIAL_116>",
120
+ "<SPECIAL_117>",
121
+ "<SPECIAL_118>",
122
+ "<SPECIAL_119>",
123
+ "<SPECIAL_120>",
124
+ "<SPECIAL_121>",
125
+ "<SPECIAL_122>",
126
+ "<SPECIAL_123>",
127
+ "<SPECIAL_124>",
128
+ "<SPECIAL_125>",
129
+ "<SPECIAL_126>",
130
+ "<SPECIAL_127>",
131
+ "<SPECIAL_128>",
132
+ "<SPECIAL_129>",
133
+ "<SPECIAL_130>",
134
+ "<SPECIAL_131>",
135
+ "<SPECIAL_132>",
136
+ "<SPECIAL_133>",
137
+ "<SPECIAL_134>",
138
+ "<SPECIAL_135>",
139
+ "<SPECIAL_136>",
140
+ "<SPECIAL_137>",
141
+ "<SPECIAL_138>",
142
+ "<SPECIAL_139>",
143
+ "<SPECIAL_140>",
144
+ "<SPECIAL_141>",
145
+ "<SPECIAL_142>",
146
+ "<SPECIAL_143>",
147
+ "<SPECIAL_144>",
148
+ "<SPECIAL_145>",
149
+ "<SPECIAL_146>",
150
+ "<SPECIAL_147>",
151
+ "<SPECIAL_148>",
152
+ "<SPECIAL_149>",
153
+ "<SPECIAL_150>",
154
+ "<SPECIAL_151>",
155
+ "<SPECIAL_152>",
156
+ "<SPECIAL_153>",
157
+ "<SPECIAL_154>",
158
+ "<SPECIAL_155>",
159
+ "<SPECIAL_156>",
160
+ "<SPECIAL_157>",
161
+ "<SPECIAL_158>",
162
+ "<SPECIAL_159>",
163
+ "<SPECIAL_160>",
164
+ "<SPECIAL_161>",
165
+ "<SPECIAL_162>",
166
+ "<SPECIAL_163>",
167
+ "<SPECIAL_164>",
168
+ "<SPECIAL_165>",
169
+ "<SPECIAL_166>",
170
+ "<SPECIAL_167>",
171
+ "<SPECIAL_168>",
172
+ "<SPECIAL_169>",
173
+ "<SPECIAL_170>",
174
+ "<SPECIAL_171>",
175
+ "<SPECIAL_172>",
176
+ "<SPECIAL_173>",
177
+ "<SPECIAL_174>",
178
+ "<SPECIAL_175>",
179
+ "<SPECIAL_176>",
180
+ "<SPECIAL_177>",
181
+ "<SPECIAL_178>",
182
+ "<SPECIAL_179>",
183
+ "<SPECIAL_180>",
184
+ "<SPECIAL_181>",
185
+ "<SPECIAL_182>",
186
+ "<SPECIAL_183>",
187
+ "<SPECIAL_184>",
188
+ "<SPECIAL_185>",
189
+ "<SPECIAL_186>",
190
+ "<SPECIAL_187>",
191
+ "<SPECIAL_188>",
192
+ "<SPECIAL_189>",
193
+ "<SPECIAL_190>",
194
+ "<SPECIAL_191>",
195
+ "<SPECIAL_192>",
196
+ "<SPECIAL_193>",
197
+ "<SPECIAL_194>",
198
+ "<SPECIAL_195>",
199
+ "<SPECIAL_196>",
200
+ "<SPECIAL_197>",
201
+ "<SPECIAL_198>",
202
+ "<SPECIAL_199>",
203
+ "<SPECIAL_200>",
204
+ "<SPECIAL_201>",
205
+ "<SPECIAL_202>",
206
+ "<SPECIAL_203>",
207
+ "<SPECIAL_204>",
208
+ "<SPECIAL_205>",
209
+ "<SPECIAL_206>",
210
+ "<SPECIAL_207>",
211
+ "<SPECIAL_208>",
212
+ "<SPECIAL_209>",
213
+ "<SPECIAL_210>",
214
+ "<SPECIAL_211>",
215
+ "<SPECIAL_212>",
216
+ "<SPECIAL_213>",
217
+ "<SPECIAL_214>",
218
+ "<SPECIAL_215>",
219
+ "<SPECIAL_216>",
220
+ "<SPECIAL_217>",
221
+ "<SPECIAL_218>",
222
+ "<SPECIAL_219>",
223
+ "<SPECIAL_220>",
224
+ "<SPECIAL_221>",
225
+ "<SPECIAL_222>",
226
+ "<SPECIAL_223>",
227
+ "<SPECIAL_224>",
228
+ "<SPECIAL_225>",
229
+ "<SPECIAL_226>",
230
+ "<SPECIAL_227>",
231
+ "<SPECIAL_228>",
232
+ "<SPECIAL_229>",
233
+ "<SPECIAL_230>",
234
+ "<SPECIAL_231>",
235
+ "<SPECIAL_232>",
236
+ "<SPECIAL_233>",
237
+ "<SPECIAL_234>",
238
+ "<SPECIAL_235>",
239
+ "<SPECIAL_236>",
240
+ "<SPECIAL_237>",
241
+ "<SPECIAL_238>",
242
+ "<SPECIAL_239>",
243
+ "<SPECIAL_240>",
244
+ "<SPECIAL_241>",
245
+ "<SPECIAL_242>",
246
+ "<SPECIAL_243>",
247
+ "<SPECIAL_244>",
248
+ "<SPECIAL_245>",
249
+ "<SPECIAL_246>",
250
+ "<SPECIAL_247>",
251
+ "<SPECIAL_248>",
252
+ "<SPECIAL_249>",
253
+ "<SPECIAL_250>",
254
+ "<SPECIAL_251>",
255
+ "<SPECIAL_252>",
256
+ "<SPECIAL_253>",
257
+ "<SPECIAL_254>",
258
+ "<SPECIAL_255>",
259
+ "<SPECIAL_256>",
260
+ "<SPECIAL_257>",
261
+ "<SPECIAL_258>",
262
+ "<SPECIAL_259>",
263
+ "<SPECIAL_260>",
264
+ "<SPECIAL_261>",
265
+ "<SPECIAL_262>",
266
+ "<SPECIAL_263>",
267
+ "<SPECIAL_264>",
268
+ "<SPECIAL_265>",
269
+ "<SPECIAL_266>",
270
+ "<SPECIAL_267>",
271
+ "<SPECIAL_268>",
272
+ "<SPECIAL_269>",
273
+ "<SPECIAL_270>",
274
+ "<SPECIAL_271>",
275
+ "<SPECIAL_272>",
276
+ "<SPECIAL_273>",
277
+ "<SPECIAL_274>",
278
+ "<SPECIAL_275>",
279
+ "<SPECIAL_276>",
280
+ "<SPECIAL_277>",
281
+ "<SPECIAL_278>",
282
+ "<SPECIAL_279>",
283
+ "<SPECIAL_280>",
284
+ "<SPECIAL_281>",
285
+ "<SPECIAL_282>",
286
+ "<SPECIAL_283>",
287
+ "<SPECIAL_284>",
288
+ "<SPECIAL_285>",
289
+ "<SPECIAL_286>",
290
+ "<SPECIAL_287>",
291
+ "<SPECIAL_288>",
292
+ "<SPECIAL_289>",
293
+ "<SPECIAL_290>",
294
+ "<SPECIAL_291>",
295
+ "<SPECIAL_292>",
296
+ "<SPECIAL_293>",
297
+ "<SPECIAL_294>",
298
+ "<SPECIAL_295>",
299
+ "<SPECIAL_296>",
300
+ "<SPECIAL_297>",
301
+ "<SPECIAL_298>",
302
+ "<SPECIAL_299>",
303
+ "<SPECIAL_300>",
304
+ "<SPECIAL_301>",
305
+ "<SPECIAL_302>",
306
+ "<SPECIAL_303>",
307
+ "<SPECIAL_304>",
308
+ "<SPECIAL_305>",
309
+ "<SPECIAL_306>",
310
+ "<SPECIAL_307>",
311
+ "<SPECIAL_308>",
312
+ "<SPECIAL_309>",
313
+ "<SPECIAL_310>",
314
+ "<SPECIAL_311>",
315
+ "<SPECIAL_312>",
316
+ "<SPECIAL_313>",
317
+ "<SPECIAL_314>",
318
+ "<SPECIAL_315>",
319
+ "<SPECIAL_316>",
320
+ "<SPECIAL_317>",
321
+ "<SPECIAL_318>",
322
+ "<SPECIAL_319>",
323
+ "<SPECIAL_320>",
324
+ "<SPECIAL_321>",
325
+ "<SPECIAL_322>",
326
+ "<SPECIAL_323>",
327
+ "<SPECIAL_324>",
328
+ "<SPECIAL_325>",
329
+ "<SPECIAL_326>",
330
+ "<SPECIAL_327>",
331
+ "<SPECIAL_328>",
332
+ "<SPECIAL_329>",
333
+ "<SPECIAL_330>",
334
+ "<SPECIAL_331>",
335
+ "<SPECIAL_332>",
336
+ "<SPECIAL_333>",
337
+ "<SPECIAL_334>",
338
+ "<SPECIAL_335>",
339
+ "<SPECIAL_336>",
340
+ "<SPECIAL_337>",
341
+ "<SPECIAL_338>",
342
+ "<SPECIAL_339>",
343
+ "<SPECIAL_340>",
344
+ "<SPECIAL_341>",
345
+ "<SPECIAL_342>",
346
+ "<SPECIAL_343>",
347
+ "<SPECIAL_344>",
348
+ "<SPECIAL_345>",
349
+ "<SPECIAL_346>",
350
+ "<SPECIAL_347>",
351
+ "<SPECIAL_348>",
352
+ "<SPECIAL_349>",
353
+ "<SPECIAL_350>",
354
+ "<SPECIAL_351>",
355
+ "<SPECIAL_352>",
356
+ "<SPECIAL_353>",
357
+ "<SPECIAL_354>",
358
+ "<SPECIAL_355>",
359
+ "<SPECIAL_356>",
360
+ "<SPECIAL_357>",
361
+ "<SPECIAL_358>",
362
+ "<SPECIAL_359>",
363
+ "<SPECIAL_360>",
364
+ "<SPECIAL_361>",
365
+ "<SPECIAL_362>",
366
+ "<SPECIAL_363>",
367
+ "<SPECIAL_364>",
368
+ "<SPECIAL_365>",
369
+ "<SPECIAL_366>",
370
+ "<SPECIAL_367>",
371
+ "<SPECIAL_368>",
372
+ "<SPECIAL_369>",
373
+ "<SPECIAL_370>",
374
+ "<SPECIAL_371>",
375
+ "<SPECIAL_372>",
376
+ "<SPECIAL_373>",
377
+ "<SPECIAL_374>",
378
+ "<SPECIAL_375>",
379
+ "<SPECIAL_376>",
380
+ "<SPECIAL_377>",
381
+ "<SPECIAL_378>",
382
+ "<SPECIAL_379>",
383
+ "<SPECIAL_380>",
384
+ "<SPECIAL_381>",
385
+ "<SPECIAL_382>",
386
+ "<SPECIAL_383>",
387
+ "<SPECIAL_384>",
388
+ "<SPECIAL_385>",
389
+ "<SPECIAL_386>",
390
+ "<SPECIAL_387>",
391
+ "<SPECIAL_388>",
392
+ "<SPECIAL_389>",
393
+ "<SPECIAL_390>",
394
+ "<SPECIAL_391>",
395
+ "<SPECIAL_392>",
396
+ "<SPECIAL_393>",
397
+ "<SPECIAL_394>",
398
+ "<SPECIAL_395>",
399
+ "<SPECIAL_396>",
400
+ "<SPECIAL_397>",
401
+ "<SPECIAL_398>",
402
+ "<SPECIAL_399>",
403
+ "<SPECIAL_400>",
404
+ "<SPECIAL_401>",
405
+ "<SPECIAL_402>",
406
+ "<SPECIAL_403>",
407
+ "<SPECIAL_404>",
408
+ "<SPECIAL_405>",
409
+ "<SPECIAL_406>",
410
+ "<SPECIAL_407>",
411
+ "<SPECIAL_408>",
412
+ "<SPECIAL_409>",
413
+ "<SPECIAL_410>",
414
+ "<SPECIAL_411>",
415
+ "<SPECIAL_412>",
416
+ "<SPECIAL_413>",
417
+ "<SPECIAL_414>",
418
+ "<SPECIAL_415>",
419
+ "<SPECIAL_416>",
420
+ "<SPECIAL_417>",
421
+ "<SPECIAL_418>",
422
+ "<SPECIAL_419>",
423
+ "<SPECIAL_420>",
424
+ "<SPECIAL_421>",
425
+ "<SPECIAL_422>",
426
+ "<SPECIAL_423>",
427
+ "<SPECIAL_424>",
428
+ "<SPECIAL_425>",
429
+ "<SPECIAL_426>",
430
+ "<SPECIAL_427>",
431
+ "<SPECIAL_428>",
432
+ "<SPECIAL_429>",
433
+ "<SPECIAL_430>",
434
+ "<SPECIAL_431>",
435
+ "<SPECIAL_432>",
436
+ "<SPECIAL_433>",
437
+ "<SPECIAL_434>",
438
+ "<SPECIAL_435>",
439
+ "<SPECIAL_436>",
440
+ "<SPECIAL_437>",
441
+ "<SPECIAL_438>",
442
+ "<SPECIAL_439>",
443
+ "<SPECIAL_440>",
444
+ "<SPECIAL_441>",
445
+ "<SPECIAL_442>",
446
+ "<SPECIAL_443>",
447
+ "<SPECIAL_444>",
448
+ "<SPECIAL_445>",
449
+ "<SPECIAL_446>",
450
+ "<SPECIAL_447>",
451
+ "<SPECIAL_448>",
452
+ "<SPECIAL_449>",
453
+ "<SPECIAL_450>",
454
+ "<SPECIAL_451>",
455
+ "<SPECIAL_452>",
456
+ "<SPECIAL_453>",
457
+ "<SPECIAL_454>",
458
+ "<SPECIAL_455>",
459
+ "<SPECIAL_456>",
460
+ "<SPECIAL_457>",
461
+ "<SPECIAL_458>",
462
+ "<SPECIAL_459>",
463
+ "<SPECIAL_460>",
464
+ "<SPECIAL_461>",
465
+ "<SPECIAL_462>",
466
+ "<SPECIAL_463>",
467
+ "<SPECIAL_464>",
468
+ "<SPECIAL_465>",
469
+ "<SPECIAL_466>",
470
+ "<SPECIAL_467>",
471
+ "<SPECIAL_468>",
472
+ "<SPECIAL_469>",
473
+ "<SPECIAL_470>",
474
+ "<SPECIAL_471>",
475
+ "<SPECIAL_472>",
476
+ "<SPECIAL_473>",
477
+ "<SPECIAL_474>",
478
+ "<SPECIAL_475>",
479
+ "<SPECIAL_476>",
480
+ "<SPECIAL_477>",
481
+ "<SPECIAL_478>",
482
+ "<SPECIAL_479>",
483
+ "<SPECIAL_480>",
484
+ "<SPECIAL_481>",
485
+ "<SPECIAL_482>",
486
+ "<SPECIAL_483>",
487
+ "<SPECIAL_484>",
488
+ "<SPECIAL_485>",
489
+ "<SPECIAL_486>",
490
+ "<SPECIAL_487>",
491
+ "<SPECIAL_488>",
492
+ "<SPECIAL_489>",
493
+ "<SPECIAL_490>",
494
+ "<SPECIAL_491>",
495
+ "<SPECIAL_492>",
496
+ "<SPECIAL_493>",
497
+ "<SPECIAL_494>",
498
+ "<SPECIAL_495>",
499
+ "<SPECIAL_496>",
500
+ "<SPECIAL_497>",
501
+ "<SPECIAL_498>",
502
+ "<SPECIAL_499>",
503
+ "<SPECIAL_500>",
504
+ "<SPECIAL_501>",
505
+ "<SPECIAL_502>",
506
+ "<SPECIAL_503>",
507
+ "<SPECIAL_504>",
508
+ "<SPECIAL_505>",
509
+ "<SPECIAL_506>",
510
+ "<SPECIAL_507>",
511
+ "<SPECIAL_508>",
512
+ "<SPECIAL_509>",
513
+ "<SPECIAL_510>",
514
+ "<SPECIAL_511>",
515
+ "<SPECIAL_512>",
516
+ "<SPECIAL_513>",
517
+ "<SPECIAL_514>",
518
+ "<SPECIAL_515>",
519
+ "<SPECIAL_516>",
520
+ "<SPECIAL_517>",
521
+ "<SPECIAL_518>",
522
+ "<SPECIAL_519>",
523
+ "<SPECIAL_520>",
524
+ "<SPECIAL_521>",
525
+ "<SPECIAL_522>",
526
+ "<SPECIAL_523>",
527
+ "<SPECIAL_524>",
528
+ "<SPECIAL_525>",
529
+ "<SPECIAL_526>",
530
+ "<SPECIAL_527>",
531
+ "<SPECIAL_528>",
532
+ "<SPECIAL_529>",
533
+ "<SPECIAL_530>",
534
+ "<SPECIAL_531>",
535
+ "<SPECIAL_532>",
536
+ "<SPECIAL_533>",
537
+ "<SPECIAL_534>",
538
+ "<SPECIAL_535>",
539
+ "<SPECIAL_536>",
540
+ "<SPECIAL_537>",
541
+ "<SPECIAL_538>",
542
+ "<SPECIAL_539>",
543
+ "<SPECIAL_540>",
544
+ "<SPECIAL_541>",
545
+ "<SPECIAL_542>",
546
+ "<SPECIAL_543>",
547
+ "<SPECIAL_544>",
548
+ "<SPECIAL_545>",
549
+ "<SPECIAL_546>",
550
+ "<SPECIAL_547>",
551
+ "<SPECIAL_548>",
552
+ "<SPECIAL_549>",
553
+ "<SPECIAL_550>",
554
+ "<SPECIAL_551>",
555
+ "<SPECIAL_552>",
556
+ "<SPECIAL_553>",
557
+ "<SPECIAL_554>",
558
+ "<SPECIAL_555>",
559
+ "<SPECIAL_556>",
560
+ "<SPECIAL_557>",
561
+ "<SPECIAL_558>",
562
+ "<SPECIAL_559>",
563
+ "<SPECIAL_560>",
564
+ "<SPECIAL_561>",
565
+ "<SPECIAL_562>",
566
+ "<SPECIAL_563>",
567
+ "<SPECIAL_564>",
568
+ "<SPECIAL_565>",
569
+ "<SPECIAL_566>",
570
+ "<SPECIAL_567>",
571
+ "<SPECIAL_568>",
572
+ "<SPECIAL_569>",
573
+ "<SPECIAL_570>",
574
+ "<SPECIAL_571>",
575
+ "<SPECIAL_572>",
576
+ "<SPECIAL_573>",
577
+ "<SPECIAL_574>",
578
+ "<SPECIAL_575>",
579
+ "<SPECIAL_576>",
580
+ "<SPECIAL_577>",
581
+ "<SPECIAL_578>",
582
+ "<SPECIAL_579>",
583
+ "<SPECIAL_580>",
584
+ "<SPECIAL_581>",
585
+ "<SPECIAL_582>",
586
+ "<SPECIAL_583>",
587
+ "<SPECIAL_584>",
588
+ "<SPECIAL_585>",
589
+ "<SPECIAL_586>",
590
+ "<SPECIAL_587>",
591
+ "<SPECIAL_588>",
592
+ "<SPECIAL_589>",
593
+ "<SPECIAL_590>",
594
+ "<SPECIAL_591>",
595
+ "<SPECIAL_592>",
596
+ "<SPECIAL_593>",
597
+ "<SPECIAL_594>",
598
+ "<SPECIAL_595>",
599
+ "<SPECIAL_596>",
600
+ "<SPECIAL_597>",
601
+ "<SPECIAL_598>",
602
+ "<SPECIAL_599>",
603
+ "<SPECIAL_600>",
604
+ "<SPECIAL_601>",
605
+ "<SPECIAL_602>",
606
+ "<SPECIAL_603>",
607
+ "<SPECIAL_604>",
608
+ "<SPECIAL_605>",
609
+ "<SPECIAL_606>",
610
+ "<SPECIAL_607>",
611
+ "<SPECIAL_608>",
612
+ "<SPECIAL_609>",
613
+ "<SPECIAL_610>",
614
+ "<SPECIAL_611>",
615
+ "<SPECIAL_612>",
616
+ "<SPECIAL_613>",
617
+ "<SPECIAL_614>",
618
+ "<SPECIAL_615>",
619
+ "<SPECIAL_616>",
620
+ "<SPECIAL_617>",
621
+ "<SPECIAL_618>",
622
+ "<SPECIAL_619>",
623
+ "<SPECIAL_620>",
624
+ "<SPECIAL_621>",
625
+ "<SPECIAL_622>",
626
+ "<SPECIAL_623>",
627
+ "<SPECIAL_624>",
628
+ "<SPECIAL_625>",
629
+ "<SPECIAL_626>",
630
+ "<SPECIAL_627>",
631
+ "<SPECIAL_628>",
632
+ "<SPECIAL_629>",
633
+ "<SPECIAL_630>",
634
+ "<SPECIAL_631>",
635
+ "<SPECIAL_632>",
636
+ "<SPECIAL_633>",
637
+ "<SPECIAL_634>",
638
+ "<SPECIAL_635>",
639
+ "<SPECIAL_636>",
640
+ "<SPECIAL_637>",
641
+ "<SPECIAL_638>",
642
+ "<SPECIAL_639>",
643
+ "<SPECIAL_640>",
644
+ "<SPECIAL_641>",
645
+ "<SPECIAL_642>",
646
+ "<SPECIAL_643>",
647
+ "<SPECIAL_644>",
648
+ "<SPECIAL_645>",
649
+ "<SPECIAL_646>",
650
+ "<SPECIAL_647>",
651
+ "<SPECIAL_648>",
652
+ "<SPECIAL_649>",
653
+ "<SPECIAL_650>",
654
+ "<SPECIAL_651>",
655
+ "<SPECIAL_652>",
656
+ "<SPECIAL_653>",
657
+ "<SPECIAL_654>",
658
+ "<SPECIAL_655>",
659
+ "<SPECIAL_656>",
660
+ "<SPECIAL_657>",
661
+ "<SPECIAL_658>",
662
+ "<SPECIAL_659>",
663
+ "<SPECIAL_660>",
664
+ "<SPECIAL_661>",
665
+ "<SPECIAL_662>",
666
+ "<SPECIAL_663>",
667
+ "<SPECIAL_664>",
668
+ "<SPECIAL_665>",
669
+ "<SPECIAL_666>",
670
+ "<SPECIAL_667>",
671
+ "<SPECIAL_668>",
672
+ "<SPECIAL_669>",
673
+ "<SPECIAL_670>",
674
+ "<SPECIAL_671>",
675
+ "<SPECIAL_672>",
676
+ "<SPECIAL_673>",
677
+ "<SPECIAL_674>",
678
+ "<SPECIAL_675>",
679
+ "<SPECIAL_676>",
680
+ "<SPECIAL_677>",
681
+ "<SPECIAL_678>",
682
+ "<SPECIAL_679>",
683
+ "<SPECIAL_680>",
684
+ "<SPECIAL_681>",
685
+ "<SPECIAL_682>",
686
+ "<SPECIAL_683>",
687
+ "<SPECIAL_684>",
688
+ "<SPECIAL_685>",
689
+ "<SPECIAL_686>",
690
+ "<SPECIAL_687>",
691
+ "<SPECIAL_688>",
692
+ "<SPECIAL_689>",
693
+ "<SPECIAL_690>",
694
+ "<SPECIAL_691>",
695
+ "<SPECIAL_692>",
696
+ "<SPECIAL_693>",
697
+ "<SPECIAL_694>",
698
+ "<SPECIAL_695>",
699
+ "<SPECIAL_696>",
700
+ "<SPECIAL_697>",
701
+ "<SPECIAL_698>",
702
+ "<SPECIAL_699>",
703
+ "<SPECIAL_700>",
704
+ "<SPECIAL_701>",
705
+ "<SPECIAL_702>",
706
+ "<SPECIAL_703>",
707
+ "<SPECIAL_704>",
708
+ "<SPECIAL_705>",
709
+ "<SPECIAL_706>",
710
+ "<SPECIAL_707>",
711
+ "<SPECIAL_708>",
712
+ "<SPECIAL_709>",
713
+ "<SPECIAL_710>",
714
+ "<SPECIAL_711>",
715
+ "<SPECIAL_712>",
716
+ "<SPECIAL_713>",
717
+ "<SPECIAL_714>",
718
+ "<SPECIAL_715>",
719
+ "<SPECIAL_716>",
720
+ "<SPECIAL_717>",
721
+ "<SPECIAL_718>",
722
+ "<SPECIAL_719>",
723
+ "<SPECIAL_720>",
724
+ "<SPECIAL_721>",
725
+ "<SPECIAL_722>",
726
+ "<SPECIAL_723>",
727
+ "<SPECIAL_724>",
728
+ "<SPECIAL_725>",
729
+ "<SPECIAL_726>",
730
+ "<SPECIAL_727>",
731
+ "<SPECIAL_728>",
732
+ "<SPECIAL_729>",
733
+ "<SPECIAL_730>",
734
+ "<SPECIAL_731>",
735
+ "<SPECIAL_732>",
736
+ "<SPECIAL_733>",
737
+ "<SPECIAL_734>",
738
+ "<SPECIAL_735>",
739
+ "<SPECIAL_736>",
740
+ "<SPECIAL_737>",
741
+ "<SPECIAL_738>",
742
+ "<SPECIAL_739>",
743
+ "<SPECIAL_740>",
744
+ "<SPECIAL_741>",
745
+ "<SPECIAL_742>",
746
+ "<SPECIAL_743>",
747
+ "<SPECIAL_744>",
748
+ "<SPECIAL_745>",
749
+ "<SPECIAL_746>",
750
+ "<SPECIAL_747>",
751
+ "<SPECIAL_748>",
752
+ "<SPECIAL_749>",
753
+ "<SPECIAL_750>",
754
+ "<SPECIAL_751>",
755
+ "<SPECIAL_752>",
756
+ "<SPECIAL_753>",
757
+ "<SPECIAL_754>",
758
+ "<SPECIAL_755>",
759
+ "<SPECIAL_756>",
760
+ "<SPECIAL_757>",
761
+ "<SPECIAL_758>",
762
+ "<SPECIAL_759>",
763
+ "<SPECIAL_760>",
764
+ "<SPECIAL_761>",
765
+ "<SPECIAL_762>",
766
+ "<SPECIAL_763>",
767
+ "<SPECIAL_764>",
768
+ "<SPECIAL_765>",
769
+ "<SPECIAL_766>",
770
+ "<SPECIAL_767>",
771
+ "<SPECIAL_768>",
772
+ "<SPECIAL_769>",
773
+ "<SPECIAL_770>",
774
+ "<SPECIAL_771>",
775
+ "<SPECIAL_772>",
776
+ "<SPECIAL_773>",
777
+ "<SPECIAL_774>",
778
+ "<SPECIAL_775>",
779
+ "<SPECIAL_776>",
780
+ "<SPECIAL_777>",
781
+ "<SPECIAL_778>",
782
+ "<SPECIAL_779>",
783
+ "<SPECIAL_780>",
784
+ "<SPECIAL_781>",
785
+ "<SPECIAL_782>",
786
+ "<SPECIAL_783>",
787
+ "<SPECIAL_784>",
788
+ "<SPECIAL_785>",
789
+ "<SPECIAL_786>",
790
+ "<SPECIAL_787>",
791
+ "<SPECIAL_788>",
792
+ "<SPECIAL_789>",
793
+ "<SPECIAL_790>",
794
+ "<SPECIAL_791>",
795
+ "<SPECIAL_792>",
796
+ "<SPECIAL_793>",
797
+ "<SPECIAL_794>",
798
+ "<SPECIAL_795>",
799
+ "<SPECIAL_796>",
800
+ "<SPECIAL_797>",
801
+ "<SPECIAL_798>",
802
+ "<SPECIAL_799>",
803
+ "<SPECIAL_800>",
804
+ "<SPECIAL_801>",
805
+ "<SPECIAL_802>",
806
+ "<SPECIAL_803>",
807
+ "<SPECIAL_804>",
808
+ "<SPECIAL_805>",
809
+ "<SPECIAL_806>",
810
+ "<SPECIAL_807>",
811
+ "<SPECIAL_808>",
812
+ "<SPECIAL_809>",
813
+ "<SPECIAL_810>",
814
+ "<SPECIAL_811>",
815
+ "<SPECIAL_812>",
816
+ "<SPECIAL_813>",
817
+ "<SPECIAL_814>",
818
+ "<SPECIAL_815>",
819
+ "<SPECIAL_816>",
820
+ "<SPECIAL_817>",
821
+ "<SPECIAL_818>",
822
+ "<SPECIAL_819>",
823
+ "<SPECIAL_820>",
824
+ "<SPECIAL_821>",
825
+ "<SPECIAL_822>",
826
+ "<SPECIAL_823>",
827
+ "<SPECIAL_824>",
828
+ "<SPECIAL_825>",
829
+ "<SPECIAL_826>",
830
+ "<SPECIAL_827>",
831
+ "<SPECIAL_828>",
832
+ "<SPECIAL_829>",
833
+ "<SPECIAL_830>",
834
+ "<SPECIAL_831>",
835
+ "<SPECIAL_832>",
836
+ "<SPECIAL_833>",
837
+ "<SPECIAL_834>",
838
+ "<SPECIAL_835>",
839
+ "<SPECIAL_836>",
840
+ "<SPECIAL_837>",
841
+ "<SPECIAL_838>",
842
+ "<SPECIAL_839>",
843
+ "<SPECIAL_840>",
844
+ "<SPECIAL_841>",
845
+ "<SPECIAL_842>",
846
+ "<SPECIAL_843>",
847
+ "<SPECIAL_844>",
848
+ "<SPECIAL_845>",
849
+ "<SPECIAL_846>",
850
+ "<SPECIAL_847>",
851
+ "<SPECIAL_848>",
852
+ "<SPECIAL_849>",
853
+ "<SPECIAL_850>",
854
+ "<SPECIAL_851>",
855
+ "<SPECIAL_852>",
856
+ "<SPECIAL_853>",
857
+ "<SPECIAL_854>",
858
+ "<SPECIAL_855>",
859
+ "<SPECIAL_856>",
860
+ "<SPECIAL_857>",
861
+ "<SPECIAL_858>",
862
+ "<SPECIAL_859>",
863
+ "<SPECIAL_860>",
864
+ "<SPECIAL_861>",
865
+ "<SPECIAL_862>",
866
+ "<SPECIAL_863>",
867
+ "<SPECIAL_864>",
868
+ "<SPECIAL_865>",
869
+ "<SPECIAL_866>",
870
+ "<SPECIAL_867>",
871
+ "<SPECIAL_868>",
872
+ "<SPECIAL_869>",
873
+ "<SPECIAL_870>",
874
+ "<SPECIAL_871>",
875
+ "<SPECIAL_872>",
876
+ "<SPECIAL_873>",
877
+ "<SPECIAL_874>",
878
+ "<SPECIAL_875>",
879
+ "<SPECIAL_876>",
880
+ "<SPECIAL_877>",
881
+ "<SPECIAL_878>",
882
+ "<SPECIAL_879>",
883
+ "<SPECIAL_880>",
884
+ "<SPECIAL_881>",
885
+ "<SPECIAL_882>",
886
+ "<SPECIAL_883>",
887
+ "<SPECIAL_884>",
888
+ "<SPECIAL_885>",
889
+ "<SPECIAL_886>",
890
+ "<SPECIAL_887>",
891
+ "<SPECIAL_888>",
892
+ "<SPECIAL_889>",
893
+ "<SPECIAL_890>",
894
+ "<SPECIAL_891>",
895
+ "<SPECIAL_892>",
896
+ "<SPECIAL_893>",
897
+ "<SPECIAL_894>",
898
+ "<SPECIAL_895>",
899
+ "<SPECIAL_896>",
900
+ "<SPECIAL_897>",
901
+ "<SPECIAL_898>",
902
+ "<SPECIAL_899>",
903
+ "<SPECIAL_900>",
904
+ "<SPECIAL_901>",
905
+ "<SPECIAL_902>",
906
+ "<SPECIAL_903>",
907
+ "<SPECIAL_904>",
908
+ "<SPECIAL_905>",
909
+ "<SPECIAL_906>",
910
+ "<SPECIAL_907>",
911
+ "<SPECIAL_908>",
912
+ "<SPECIAL_909>",
913
+ "<SPECIAL_910>",
914
+ "<SPECIAL_911>",
915
+ "<SPECIAL_912>",
916
+ "<SPECIAL_913>",
917
+ "<SPECIAL_914>",
918
+ "<SPECIAL_915>",
919
+ "<SPECIAL_916>",
920
+ "<SPECIAL_917>",
921
+ "<SPECIAL_918>",
922
+ "<SPECIAL_919>",
923
+ "<SPECIAL_920>",
924
+ "<SPECIAL_921>",
925
+ "<SPECIAL_922>",
926
+ "<SPECIAL_923>",
927
+ "<SPECIAL_924>",
928
+ "<SPECIAL_925>",
929
+ "<SPECIAL_926>",
930
+ "<SPECIAL_927>",
931
+ "<SPECIAL_928>",
932
+ "<SPECIAL_929>",
933
+ "<SPECIAL_930>",
934
+ "<SPECIAL_931>",
935
+ "<SPECIAL_932>",
936
+ "<SPECIAL_933>",
937
+ "<SPECIAL_934>",
938
+ "<SPECIAL_935>",
939
+ "<SPECIAL_936>",
940
+ "<SPECIAL_937>",
941
+ "<SPECIAL_938>",
942
+ "<SPECIAL_939>",
943
+ "<SPECIAL_940>",
944
+ "<SPECIAL_941>",
945
+ "<SPECIAL_942>",
946
+ "<SPECIAL_943>",
947
+ "<SPECIAL_944>",
948
+ "<SPECIAL_945>",
949
+ "<SPECIAL_946>",
950
+ "<SPECIAL_947>",
951
+ "<SPECIAL_948>",
952
+ "<SPECIAL_949>",
953
+ "<SPECIAL_950>",
954
+ "<SPECIAL_951>",
955
+ "<SPECIAL_952>",
956
+ "<SPECIAL_953>",
957
+ "<SPECIAL_954>",
958
+ "<SPECIAL_955>",
959
+ "<SPECIAL_956>",
960
+ "<SPECIAL_957>",
961
+ "<SPECIAL_958>",
962
+ "<SPECIAL_959>",
963
+ "<SPECIAL_960>",
964
+ "<SPECIAL_961>",
965
+ "<SPECIAL_962>",
966
+ "<SPECIAL_963>",
967
+ "<SPECIAL_964>",
968
+ "<SPECIAL_965>",
969
+ "<SPECIAL_966>",
970
+ "<SPECIAL_967>",
971
+ "<SPECIAL_968>",
972
+ "<SPECIAL_969>",
973
+ "<SPECIAL_970>",
974
+ "<SPECIAL_971>",
975
+ "<SPECIAL_972>",
976
+ "<SPECIAL_973>",
977
+ "<SPECIAL_974>",
978
+ "<SPECIAL_975>",
979
+ "<SPECIAL_976>",
980
+ "<SPECIAL_977>",
981
+ "<SPECIAL_978>",
982
+ "<SPECIAL_979>",
983
+ "<SPECIAL_980>",
984
+ "<SPECIAL_981>",
985
+ "<SPECIAL_982>",
986
+ "<SPECIAL_983>",
987
+ "<SPECIAL_984>",
988
+ "<SPECIAL_985>",
989
+ "<SPECIAL_986>",
990
+ "<SPECIAL_987>",
991
+ "<SPECIAL_988>",
992
+ "<SPECIAL_989>",
993
+ "<SPECIAL_990>",
994
+ "<SPECIAL_991>",
995
+ "<SPECIAL_992>",
996
+ "<SPECIAL_993>",
997
+ "<SPECIAL_994>",
998
+ "<SPECIAL_995>",
999
+ "<SPECIAL_996>",
1000
+ "<SPECIAL_997>",
1001
+ "<SPECIAL_998>",
1002
+ "<SPECIAL_999>"
1003
+ ],
1004
+ "bos_token": {
1005
+ "content": "<s>",
1006
+ "lstrip": false,
1007
+ "normalized": false,
1008
+ "rstrip": false,
1009
+ "single_word": false
1010
+ },
1011
+ "eos_token": {
1012
+ "content": "</s>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false
1017
+ },
1018
+ "pad_token": "</s>",
1019
+ "unk_token": {
1020
+ "content": "<unk>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false
1025
+ }
1026
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b76085f9923309d873994d444989f7eb6ec074b06f25b58f1e8d7b7741070949
3
+ size 17078037
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
trainer_state.json ADDED
@@ -0,0 +1,1993 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0294117647058822,
5
+ "eval_steps": 500,
6
+ "global_step": 280,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.003676470588235294,
13
+ "grad_norm": 0.20527108013629913,
14
+ "learning_rate": 2.0000000000000002e-07,
15
+ "loss": 1.7943,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.007352941176470588,
20
+ "grad_norm": 0.24291086196899414,
21
+ "learning_rate": 4.0000000000000003e-07,
22
+ "loss": 1.8345,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.011029411764705883,
27
+ "grad_norm": 0.20741452276706696,
28
+ "learning_rate": 6.000000000000001e-07,
29
+ "loss": 1.998,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.014705882352941176,
34
+ "grad_norm": 0.242351695895195,
35
+ "learning_rate": 8.000000000000001e-07,
36
+ "loss": 1.814,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.01838235294117647,
41
+ "grad_norm": 0.20806454122066498,
42
+ "learning_rate": 1.0000000000000002e-06,
43
+ "loss": 1.8541,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.022058823529411766,
48
+ "grad_norm": 0.2232266068458557,
49
+ "learning_rate": 1.2000000000000002e-06,
50
+ "loss": 1.8491,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.025735294117647058,
55
+ "grad_norm": 0.24171140789985657,
56
+ "learning_rate": 1.4000000000000001e-06,
57
+ "loss": 1.7849,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.029411764705882353,
62
+ "grad_norm": 0.2743687331676483,
63
+ "learning_rate": 1.6000000000000001e-06,
64
+ "loss": 1.7188,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.03308823529411765,
69
+ "grad_norm": 0.17957501113414764,
70
+ "learning_rate": 1.8000000000000001e-06,
71
+ "loss": 2.0571,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.03676470588235294,
76
+ "grad_norm": 0.201459139585495,
77
+ "learning_rate": 2.0000000000000003e-06,
78
+ "loss": 1.9404,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.04044117647058824,
83
+ "grad_norm": 0.2665609121322632,
84
+ "learning_rate": 2.2e-06,
85
+ "loss": 1.9073,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.04411764705882353,
90
+ "grad_norm": 0.2173280417919159,
91
+ "learning_rate": 2.4000000000000003e-06,
92
+ "loss": 1.8472,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.04779411764705882,
97
+ "grad_norm": 1.175387978553772,
98
+ "learning_rate": 2.6e-06,
99
+ "loss": 1.9748,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.051470588235294115,
104
+ "grad_norm": 0.22836479544639587,
105
+ "learning_rate": 2.8000000000000003e-06,
106
+ "loss": 1.799,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.05514705882352941,
111
+ "grad_norm": 0.22088803350925446,
112
+ "learning_rate": 3e-06,
113
+ "loss": 1.735,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.058823529411764705,
118
+ "grad_norm": 0.20766077935695648,
119
+ "learning_rate": 3.2000000000000003e-06,
120
+ "loss": 1.8871,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.0625,
125
+ "grad_norm": 0.2599094808101654,
126
+ "learning_rate": 3.4000000000000005e-06,
127
+ "loss": 1.6319,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.0661764705882353,
132
+ "grad_norm": 0.21609334647655487,
133
+ "learning_rate": 3.6000000000000003e-06,
134
+ "loss": 1.845,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.06985294117647059,
139
+ "grad_norm": 0.21392510831356049,
140
+ "learning_rate": 3.8000000000000005e-06,
141
+ "loss": 1.925,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.07352941176470588,
146
+ "grad_norm": 0.22204363346099854,
147
+ "learning_rate": 4.000000000000001e-06,
148
+ "loss": 1.83,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.07720588235294118,
153
+ "grad_norm": 0.24028566479682922,
154
+ "learning_rate": 4.2000000000000004e-06,
155
+ "loss": 1.7375,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.08088235294117647,
160
+ "grad_norm": 0.26085978746414185,
161
+ "learning_rate": 4.4e-06,
162
+ "loss": 1.7598,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.08455882352941177,
167
+ "grad_norm": 0.29647570848464966,
168
+ "learning_rate": 4.600000000000001e-06,
169
+ "loss": 1.7059,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.08823529411764706,
174
+ "grad_norm": 0.2606264054775238,
175
+ "learning_rate": 4.800000000000001e-06,
176
+ "loss": 1.7886,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.09191176470588236,
181
+ "grad_norm": 0.20121997594833374,
182
+ "learning_rate": 5e-06,
183
+ "loss": 2.069,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.09558823529411764,
188
+ "grad_norm": 0.23160211741924286,
189
+ "learning_rate": 4.9999541991311605e-06,
190
+ "loss": 1.9422,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.09926470588235294,
195
+ "grad_norm": 0.2353476583957672,
196
+ "learning_rate": 4.999816798202817e-06,
197
+ "loss": 1.8665,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.10294117647058823,
202
+ "grad_norm": 0.24767348170280457,
203
+ "learning_rate": 4.999587802249433e-06,
204
+ "loss": 1.7446,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.10661764705882353,
209
+ "grad_norm": 0.24555310606956482,
210
+ "learning_rate": 4.999267219661583e-06,
211
+ "loss": 1.8733,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.11029411764705882,
216
+ "grad_norm": 2.8036930561065674,
217
+ "learning_rate": 4.9988550621856336e-06,
218
+ "loss": 1.829,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.11397058823529412,
223
+ "grad_norm": 0.1886998862028122,
224
+ "learning_rate": 4.998351344923323e-06,
225
+ "loss": 1.8259,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.11764705882352941,
230
+ "grad_norm": 0.23365086317062378,
231
+ "learning_rate": 4.997756086331198e-06,
232
+ "loss": 1.9775,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.1213235294117647,
237
+ "grad_norm": 0.18128617107868195,
238
+ "learning_rate": 4.997069308219952e-06,
239
+ "loss": 1.8398,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.125,
244
+ "grad_norm": 0.21758407354354858,
245
+ "learning_rate": 4.996291035753608e-06,
246
+ "loss": 1.7429,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.12867647058823528,
251
+ "grad_norm": 0.17675141990184784,
252
+ "learning_rate": 4.995421297448614e-06,
253
+ "loss": 1.9317,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.1323529411764706,
258
+ "grad_norm": 0.18282735347747803,
259
+ "learning_rate": 4.994460125172783e-06,
260
+ "loss": 1.8007,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.13602941176470587,
265
+ "grad_norm": 0.17422187328338623,
266
+ "learning_rate": 4.993407554144137e-06,
267
+ "loss": 1.9293,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.13970588235294118,
272
+ "grad_norm": 0.20074324309825897,
273
+ "learning_rate": 4.992263622929609e-06,
274
+ "loss": 1.7154,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.14338235294117646,
279
+ "grad_norm": 0.16826124489307404,
280
+ "learning_rate": 4.991028373443635e-06,
281
+ "loss": 1.8976,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.14705882352941177,
286
+ "grad_norm": 0.1737484484910965,
287
+ "learning_rate": 4.989701850946613e-06,
288
+ "loss": 1.9842,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.15073529411764705,
293
+ "grad_norm": 0.17321883141994476,
294
+ "learning_rate": 4.988284104043251e-06,
295
+ "loss": 1.691,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.15441176470588236,
300
+ "grad_norm": 0.16045594215393066,
301
+ "learning_rate": 4.986775184680782e-06,
302
+ "loss": 1.9388,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.15808823529411764,
307
+ "grad_norm": 0.1485867202281952,
308
+ "learning_rate": 4.985175148147057e-06,
309
+ "loss": 1.9412,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.16176470588235295,
314
+ "grad_norm": 0.15609779953956604,
315
+ "learning_rate": 4.983484053068529e-06,
316
+ "loss": 1.8341,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.16544117647058823,
321
+ "grad_norm": 0.14435409009456635,
322
+ "learning_rate": 4.981701961408096e-06,
323
+ "loss": 1.8187,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.16911764705882354,
328
+ "grad_norm": 0.14100129902362823,
329
+ "learning_rate": 4.979828938462836e-06,
330
+ "loss": 1.8016,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.17279411764705882,
335
+ "grad_norm": 0.13618572056293488,
336
+ "learning_rate": 4.977865052861611e-06,
337
+ "loss": 1.7432,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.17647058823529413,
342
+ "grad_norm": 0.6496532559394836,
343
+ "learning_rate": 4.975810376562555e-06,
344
+ "loss": 1.7203,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.1801470588235294,
349
+ "grad_norm": 0.1398126780986786,
350
+ "learning_rate": 4.973664984850435e-06,
351
+ "loss": 1.6294,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.18382352941176472,
356
+ "grad_norm": 0.13840018212795258,
357
+ "learning_rate": 4.971428956333896e-06,
358
+ "loss": 1.7861,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.1875,
363
+ "grad_norm": 0.11684554070234299,
364
+ "learning_rate": 4.969102372942575e-06,
365
+ "loss": 1.9307,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.19117647058823528,
370
+ "grad_norm": 0.12185637652873993,
371
+ "learning_rate": 4.966685319924105e-06,
372
+ "loss": 1.8909,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.1948529411764706,
377
+ "grad_norm": 0.11658155173063278,
378
+ "learning_rate": 4.96417788584099e-06,
379
+ "loss": 1.8678,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.19852941176470587,
384
+ "grad_norm": 0.1272619068622589,
385
+ "learning_rate": 4.961580162567358e-06,
386
+ "loss": 1.8719,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.20220588235294118,
391
+ "grad_norm": 0.12430202960968018,
392
+ "learning_rate": 4.958892245285594e-06,
393
+ "loss": 1.849,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.20588235294117646,
398
+ "grad_norm": 0.11343392729759216,
399
+ "learning_rate": 4.956114232482854e-06,
400
+ "loss": 2.0185,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.20955882352941177,
405
+ "grad_norm": 0.10528125613927841,
406
+ "learning_rate": 4.953246225947461e-06,
407
+ "loss": 1.8122,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.21323529411764705,
412
+ "grad_norm": 0.11682136356830597,
413
+ "learning_rate": 4.950288330765167e-06,
414
+ "loss": 1.819,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.21691176470588236,
419
+ "grad_norm": 0.10487648099660873,
420
+ "learning_rate": 4.947240655315306e-06,
421
+ "loss": 1.8969,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.22058823529411764,
426
+ "grad_norm": 0.10324753075838089,
427
+ "learning_rate": 4.944103311266827e-06,
428
+ "loss": 1.9131,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.22426470588235295,
433
+ "grad_norm": 0.11773849278688431,
434
+ "learning_rate": 4.9408764135741955e-06,
435
+ "loss": 1.8771,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.22794117647058823,
440
+ "grad_norm": 0.10764829814434052,
441
+ "learning_rate": 4.937560080473186e-06,
442
+ "loss": 1.8007,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.23161764705882354,
447
+ "grad_norm": 0.09463761746883392,
448
+ "learning_rate": 4.934154433476548e-06,
449
+ "loss": 1.7991,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.23529411764705882,
454
+ "grad_norm": 0.11386000365018845,
455
+ "learning_rate": 4.9306595973695545e-06,
456
+ "loss": 1.8523,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.23897058823529413,
461
+ "grad_norm": 0.10437195003032684,
462
+ "learning_rate": 4.927075700205431e-06,
463
+ "loss": 1.7621,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.2426470588235294,
468
+ "grad_norm": 0.11349602788686752,
469
+ "learning_rate": 4.923402873300659e-06,
470
+ "loss": 1.7418,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.24632352941176472,
475
+ "grad_norm": 0.16744942963123322,
476
+ "learning_rate": 4.91964125123017e-06,
477
+ "loss": 1.8985,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.25,
482
+ "grad_norm": 0.11906889081001282,
483
+ "learning_rate": 4.915790971822412e-06,
484
+ "loss": 1.7156,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.2536764705882353,
489
+ "grad_norm": 0.10837192088365555,
490
+ "learning_rate": 4.911852176154298e-06,
491
+ "loss": 1.9407,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.25735294117647056,
496
+ "grad_norm": 0.12406501919031143,
497
+ "learning_rate": 4.907825008546039e-06,
498
+ "loss": 1.8413,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.2610294117647059,
503
+ "grad_norm": 0.10750163346529007,
504
+ "learning_rate": 4.903709616555854e-06,
505
+ "loss": 1.9044,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.2647058823529412,
510
+ "grad_norm": 0.11223389953374863,
511
+ "learning_rate": 4.899506150974568e-06,
512
+ "loss": 1.7632,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.26838235294117646,
517
+ "grad_norm": 0.1262880116701126,
518
+ "learning_rate": 4.8952147658200815e-06,
519
+ "loss": 1.6656,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.27205882352941174,
524
+ "grad_norm": 0.1263853758573532,
525
+ "learning_rate": 4.890835618331729e-06,
526
+ "loss": 1.7326,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.2757352941176471,
531
+ "grad_norm": 0.10728048533201218,
532
+ "learning_rate": 4.886368868964517e-06,
533
+ "loss": 1.6571,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.27941176470588236,
538
+ "grad_norm": 0.10924043506383896,
539
+ "learning_rate": 4.8818146813832475e-06,
540
+ "loss": 1.8581,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.28308823529411764,
545
+ "grad_norm": 0.12963686883449554,
546
+ "learning_rate": 4.877173222456521e-06,
547
+ "loss": 1.6903,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.2867647058823529,
552
+ "grad_norm": 0.11058393120765686,
553
+ "learning_rate": 4.872444662250617e-06,
554
+ "loss": 1.9864,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.29044117647058826,
559
+ "grad_norm": 0.10086097568273544,
560
+ "learning_rate": 4.867629174023269e-06,
561
+ "loss": 1.7289,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.29411764705882354,
566
+ "grad_norm": 0.19624628126621246,
567
+ "learning_rate": 4.862726934217311e-06,
568
+ "loss": 1.8319,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.2977941176470588,
573
+ "grad_norm": 0.10972262173891068,
574
+ "learning_rate": 4.857738122454219e-06,
575
+ "loss": 1.9062,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.3014705882352941,
580
+ "grad_norm": 0.1163967102766037,
581
+ "learning_rate": 4.852662921527523e-06,
582
+ "loss": 1.7979,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.30514705882352944,
587
+ "grad_norm": 0.26644641160964966,
588
+ "learning_rate": 4.847501517396111e-06,
589
+ "loss": 1.8551,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.3088235294117647,
594
+ "grad_norm": 0.097193643450737,
595
+ "learning_rate": 4.84225409917742e-06,
596
+ "loss": 1.8247,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.3125,
601
+ "grad_norm": 0.09594879299402237,
602
+ "learning_rate": 4.8369208591405e-06,
603
+ "loss": 1.6824,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.3161764705882353,
608
+ "grad_norm": 0.10404081642627716,
609
+ "learning_rate": 4.831501992698972e-06,
610
+ "loss": 1.8342,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.31985294117647056,
615
+ "grad_norm": 0.10298274457454681,
616
+ "learning_rate": 4.825997698403871e-06,
617
+ "loss": 1.9121,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.3235294117647059,
622
+ "grad_norm": 0.12172818183898926,
623
+ "learning_rate": 4.820408177936365e-06,
624
+ "loss": 1.8046,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.3272058823529412,
629
+ "grad_norm": 0.10750740766525269,
630
+ "learning_rate": 4.814733636100369e-06,
631
+ "loss": 1.9354,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.33088235294117646,
636
+ "grad_norm": 0.10367678105831146,
637
+ "learning_rate": 4.808974280815039e-06,
638
+ "loss": 2.0473,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.33455882352941174,
643
+ "grad_norm": 0.10471010208129883,
644
+ "learning_rate": 4.803130323107157e-06,
645
+ "loss": 1.8647,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.3382352941176471,
650
+ "grad_norm": 0.11597222834825516,
651
+ "learning_rate": 4.797201977103395e-06,
652
+ "loss": 1.6487,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.34191176470588236,
657
+ "grad_norm": 0.10744346678256989,
658
+ "learning_rate": 4.791189460022472e-06,
659
+ "loss": 1.8301,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.34558823529411764,
664
+ "grad_norm": 0.1046157106757164,
665
+ "learning_rate": 4.785092992167192e-06,
666
+ "loss": 1.8117,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.3492647058823529,
671
+ "grad_norm": 0.10467652231454849,
672
+ "learning_rate": 4.778912796916374e-06,
673
+ "loss": 1.932,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.35294117647058826,
678
+ "grad_norm": 0.10906960070133209,
679
+ "learning_rate": 4.77264910071667e-06,
680
+ "loss": 1.8958,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.35661764705882354,
685
+ "grad_norm": 0.1271820366382599,
686
+ "learning_rate": 4.766302133074261e-06,
687
+ "loss": 1.5758,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.3602941176470588,
692
+ "grad_norm": 0.10758531838655472,
693
+ "learning_rate": 4.759872126546452e-06,
694
+ "loss": 1.7336,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.3639705882352941,
699
+ "grad_norm": 0.11692432314157486,
700
+ "learning_rate": 4.753359316733154e-06,
701
+ "loss": 1.7036,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.36764705882352944,
706
+ "grad_norm": 0.11493757367134094,
707
+ "learning_rate": 4.746763942268243e-06,
708
+ "loss": 1.648,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.3713235294117647,
713
+ "grad_norm": 0.11132095009088516,
714
+ "learning_rate": 4.740086244810825e-06,
715
+ "loss": 1.8441,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.375,
720
+ "grad_norm": 0.11245792359113693,
721
+ "learning_rate": 4.733326469036377e-06,
722
+ "loss": 1.8768,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.3786764705882353,
727
+ "grad_norm": 0.11370263248682022,
728
+ "learning_rate": 4.726484862627779e-06,
729
+ "loss": 1.8407,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.38235294117647056,
734
+ "grad_norm": 0.1197124496102333,
735
+ "learning_rate": 4.719561676266249e-06,
736
+ "loss": 1.6798,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.3860294117647059,
741
+ "grad_norm": 0.114149309694767,
742
+ "learning_rate": 4.712557163622145e-06,
743
+ "loss": 1.7261,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.3897058823529412,
748
+ "grad_norm": 0.1167868822813034,
749
+ "learning_rate": 4.7054715813456795e-06,
750
+ "loss": 1.7402,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.39338235294117646,
755
+ "grad_norm": 0.10888572782278061,
756
+ "learning_rate": 4.698305189057512e-06,
757
+ "loss": 1.7388,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.39705882352941174,
762
+ "grad_norm": 0.11005932092666626,
763
+ "learning_rate": 4.691058249339238e-06,
764
+ "loss": 1.8437,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.4007352941176471,
769
+ "grad_norm": 0.11730121821165085,
770
+ "learning_rate": 4.683731027723764e-06,
771
+ "loss": 1.7581,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.40441176470588236,
776
+ "grad_norm": 0.10690360516309738,
777
+ "learning_rate": 4.676323792685585e-06,
778
+ "loss": 1.8829,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.40808823529411764,
783
+ "grad_norm": 0.11015469580888748,
784
+ "learning_rate": 4.668836815630939e-06,
785
+ "loss": 1.856,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.4117647058823529,
790
+ "grad_norm": 0.12613315880298615,
791
+ "learning_rate": 4.661270370887872e-06,
792
+ "loss": 1.737,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.41544117647058826,
797
+ "grad_norm": 0.12080664932727814,
798
+ "learning_rate": 4.6536247356961775e-06,
799
+ "loss": 1.7363,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.41911764705882354,
804
+ "grad_norm": 0.11145513504743576,
805
+ "learning_rate": 4.645900190197242e-06,
806
+ "loss": 1.6671,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.4227941176470588,
811
+ "grad_norm": 0.11746977269649506,
812
+ "learning_rate": 4.638097017423783e-06,
813
+ "loss": 1.6717,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.4264705882352941,
818
+ "grad_norm": 0.10946469008922577,
819
+ "learning_rate": 4.6302155032894745e-06,
820
+ "loss": 1.7082,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.43014705882352944,
825
+ "grad_norm": 0.11189309507608414,
826
+ "learning_rate": 4.622255936578473e-06,
827
+ "loss": 1.7705,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.4338235294117647,
832
+ "grad_norm": 0.12764301896095276,
833
+ "learning_rate": 4.614218608934834e-06,
834
+ "loss": 1.6192,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.4375,
839
+ "grad_norm": 0.11146359890699387,
840
+ "learning_rate": 4.606103814851829e-06,
841
+ "loss": 1.8188,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.4411764705882353,
846
+ "grad_norm": 0.15550808608531952,
847
+ "learning_rate": 4.597911851661155e-06,
848
+ "loss": 1.9713,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.44485294117647056,
853
+ "grad_norm": 0.12268511950969696,
854
+ "learning_rate": 4.589643019522036e-06,
855
+ "loss": 1.575,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.4485294117647059,
860
+ "grad_norm": 0.11507008224725723,
861
+ "learning_rate": 4.581297621410231e-06,
862
+ "loss": 1.8125,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.4522058823529412,
867
+ "grad_norm": 0.13275226950645447,
868
+ "learning_rate": 4.572875963106924e-06,
869
+ "loss": 1.6451,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.45588235294117646,
874
+ "grad_norm": 0.1096140444278717,
875
+ "learning_rate": 4.564378353187533e-06,
876
+ "loss": 1.879,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.45955882352941174,
881
+ "grad_norm": 0.11247947067022324,
882
+ "learning_rate": 4.555805103010388e-06,
883
+ "loss": 1.5851,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.4632352941176471,
888
+ "grad_norm": 0.12080512940883636,
889
+ "learning_rate": 4.5471565267053365e-06,
890
+ "loss": 1.6433,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.46691176470588236,
895
+ "grad_norm": 0.1230054646730423,
896
+ "learning_rate": 4.538432941162227e-06,
897
+ "loss": 1.9295,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.47058823529411764,
902
+ "grad_norm": 0.11661480367183685,
903
+ "learning_rate": 4.529634666019294e-06,
904
+ "loss": 1.8518,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.4742647058823529,
909
+ "grad_norm": 0.10992003977298737,
910
+ "learning_rate": 4.520762023651456e-06,
911
+ "loss": 1.8141,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.47794117647058826,
916
+ "grad_norm": 0.11171197146177292,
917
+ "learning_rate": 4.511815339158497e-06,
918
+ "loss": 1.8021,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.48161764705882354,
923
+ "grad_norm": 0.1056443303823471,
924
+ "learning_rate": 4.502794940353155e-06,
925
+ "loss": 1.9079,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.4852941176470588,
930
+ "grad_norm": 0.10654587298631668,
931
+ "learning_rate": 4.493701157749112e-06,
932
+ "loss": 1.7223,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.4889705882352941,
937
+ "grad_norm": 0.11630342155694962,
938
+ "learning_rate": 4.484534324548883e-06,
939
+ "loss": 1.7638,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.49264705882352944,
944
+ "grad_norm": 0.10967176407575607,
945
+ "learning_rate": 4.4752947766316094e-06,
946
+ "loss": 1.7722,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.4963235294117647,
951
+ "grad_norm": 0.10630583018064499,
952
+ "learning_rate": 4.465982852540747e-06,
953
+ "loss": 1.7088,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.5,
958
+ "grad_norm": 0.12106428295373917,
959
+ "learning_rate": 4.456598893471668e-06,
960
+ "loss": 1.7594,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.5036764705882353,
965
+ "grad_norm": 0.11997083574533463,
966
+ "learning_rate": 4.447143243259155e-06,
967
+ "loss": 1.9027,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.5073529411764706,
972
+ "grad_norm": 0.12016075849533081,
973
+ "learning_rate": 4.437616248364805e-06,
974
+ "loss": 1.8426,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.5110294117647058,
979
+ "grad_norm": 0.1092967689037323,
980
+ "learning_rate": 4.428018257864333e-06,
981
+ "loss": 1.7154,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.5147058823529411,
986
+ "grad_norm": 0.12067247182130814,
987
+ "learning_rate": 4.41834962343478e-06,
988
+ "loss": 1.7537,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.5183823529411765,
993
+ "grad_norm": 0.10798091441392899,
994
+ "learning_rate": 4.408610699341634e-06,
995
+ "loss": 1.8887,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.5220588235294118,
1000
+ "grad_norm": 0.12265045195817947,
1001
+ "learning_rate": 4.398801842425842e-06,
1002
+ "loss": 1.5765,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.5257352941176471,
1007
+ "grad_norm": 0.112462118268013,
1008
+ "learning_rate": 4.38892341209074e-06,
1009
+ "loss": 1.924,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.5294117647058824,
1014
+ "grad_norm": 0.11943833529949188,
1015
+ "learning_rate": 4.378975770288881e-06,
1016
+ "loss": 1.793,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.5330882352941176,
1021
+ "grad_norm": 0.13217097520828247,
1022
+ "learning_rate": 4.368959281508776e-06,
1023
+ "loss": 1.7578,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.5367647058823529,
1028
+ "grad_norm": 0.13434284925460815,
1029
+ "learning_rate": 4.358874312761535e-06,
1030
+ "loss": 1.8399,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.5404411764705882,
1035
+ "grad_norm": 0.11146039515733719,
1036
+ "learning_rate": 4.348721233567424e-06,
1037
+ "loss": 1.9686,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.5441176470588235,
1042
+ "grad_norm": 0.11943879723548889,
1043
+ "learning_rate": 4.3385004159423195e-06,
1044
+ "loss": 1.7348,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.5477941176470589,
1049
+ "grad_norm": 0.1157916858792305,
1050
+ "learning_rate": 4.328212234384085e-06,
1051
+ "loss": 1.7748,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.5514705882352942,
1056
+ "grad_norm": 0.1146322712302208,
1057
+ "learning_rate": 4.317857065858843e-06,
1058
+ "loss": 1.607,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.5551470588235294,
1063
+ "grad_norm": 0.11403496563434601,
1064
+ "learning_rate": 4.307435289787169e-06,
1065
+ "loss": 1.8049,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.5588235294117647,
1070
+ "grad_norm": 0.11926942318677902,
1071
+ "learning_rate": 4.296947288030178e-06,
1072
+ "loss": 1.8483,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.5625,
1077
+ "grad_norm": 0.11152566224336624,
1078
+ "learning_rate": 4.286393444875546e-06,
1079
+ "loss": 1.8334,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.5661764705882353,
1084
+ "grad_norm": 0.11430760473012924,
1085
+ "learning_rate": 4.2757741470234214e-06,
1086
+ "loss": 1.9025,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.5698529411764706,
1091
+ "grad_norm": 0.11427745968103409,
1092
+ "learning_rate": 4.26508978357226e-06,
1093
+ "loss": 1.787,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.5735294117647058,
1098
+ "grad_norm": 0.11434771120548248,
1099
+ "learning_rate": 4.254340746004564e-06,
1100
+ "loss": 1.868,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.5772058823529411,
1105
+ "grad_norm": 0.11024492233991623,
1106
+ "learning_rate": 4.243527428172541e-06,
1107
+ "loss": 1.7228,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.5808823529411765,
1112
+ "grad_norm": 0.11791540682315826,
1113
+ "learning_rate": 4.232650226283672e-06,
1114
+ "loss": 1.9425,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.5845588235294118,
1119
+ "grad_norm": 0.1227816492319107,
1120
+ "learning_rate": 4.221709538886197e-06,
1121
+ "loss": 1.6622,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.5882352941176471,
1126
+ "grad_norm": 0.12510444223880768,
1127
+ "learning_rate": 4.210705766854505e-06,
1128
+ "loss": 1.7713,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.5919117647058824,
1133
+ "grad_norm": 0.1140972450375557,
1134
+ "learning_rate": 4.199639313374451e-06,
1135
+ "loss": 1.936,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.5955882352941176,
1140
+ "grad_norm": 0.12299997359514236,
1141
+ "learning_rate": 4.188510583928583e-06,
1142
+ "loss": 1.7037,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.5992647058823529,
1147
+ "grad_norm": 0.13803604245185852,
1148
+ "learning_rate": 4.177319986281285e-06,
1149
+ "loss": 1.9056,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.6029411764705882,
1154
+ "grad_norm": 0.13489902019500732,
1155
+ "learning_rate": 4.166067930463831e-06,
1156
+ "loss": 1.6053,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.6066176470588235,
1161
+ "grad_norm": 0.11227516829967499,
1162
+ "learning_rate": 4.154754828759368e-06,
1163
+ "loss": 1.7738,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.6102941176470589,
1168
+ "grad_norm": 0.1096302792429924,
1169
+ "learning_rate": 4.143381095687805e-06,
1170
+ "loss": 1.8948,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.6139705882352942,
1175
+ "grad_norm": 0.11712092161178589,
1176
+ "learning_rate": 4.131947147990629e-06,
1177
+ "loss": 1.8913,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.6176470588235294,
1182
+ "grad_norm": 0.12525494396686554,
1183
+ "learning_rate": 4.120453404615628e-06,
1184
+ "loss": 1.7482,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.6213235294117647,
1189
+ "grad_norm": 0.11608923971652985,
1190
+ "learning_rate": 4.108900286701553e-06,
1191
+ "loss": 1.6711,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.625,
1196
+ "grad_norm": 0.12490076571702957,
1197
+ "learning_rate": 4.097288217562669e-06,
1198
+ "loss": 1.797,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.6286764705882353,
1203
+ "grad_norm": 0.11467793583869934,
1204
+ "learning_rate": 4.085617622673265e-06,
1205
+ "loss": 1.7588,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.6323529411764706,
1210
+ "grad_norm": 0.11370235681533813,
1211
+ "learning_rate": 4.073888929652048e-06,
1212
+ "loss": 1.8153,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.6360294117647058,
1217
+ "grad_norm": 0.11949747055768967,
1218
+ "learning_rate": 4.062102568246482e-06,
1219
+ "loss": 1.6628,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.6397058823529411,
1224
+ "grad_norm": 0.11381959915161133,
1225
+ "learning_rate": 4.050258970317042e-06,
1226
+ "loss": 1.7939,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.6433823529411765,
1231
+ "grad_norm": 0.12485770136117935,
1232
+ "learning_rate": 4.0383585698213874e-06,
1233
+ "loss": 1.9112,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.6470588235294118,
1238
+ "grad_norm": 0.12126533687114716,
1239
+ "learning_rate": 4.0264018027984654e-06,
1240
+ "loss": 1.7908,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.6507352941176471,
1245
+ "grad_norm": 0.10532236844301224,
1246
+ "learning_rate": 4.01438910735253e-06,
1247
+ "loss": 1.857,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.6544117647058824,
1252
+ "grad_norm": 0.11462371796369553,
1253
+ "learning_rate": 4.002320923637091e-06,
1254
+ "loss": 1.961,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.6580882352941176,
1259
+ "grad_norm": 0.11390509456396103,
1260
+ "learning_rate": 3.99019769383879e-06,
1261
+ "loss": 1.7004,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.6617647058823529,
1266
+ "grad_norm": 0.11384452134370804,
1267
+ "learning_rate": 3.978019862161191e-06,
1268
+ "loss": 1.719,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.6654411764705882,
1273
+ "grad_norm": 0.12574177980422974,
1274
+ "learning_rate": 3.965787874808513e-06,
1275
+ "loss": 1.7728,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.6691176470588235,
1280
+ "grad_norm": 0.11700152605772018,
1281
+ "learning_rate": 3.953502179969274e-06,
1282
+ "loss": 1.7115,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.6727941176470589,
1287
+ "grad_norm": 0.15770043432712555,
1288
+ "learning_rate": 3.941163227799872e-06,
1289
+ "loss": 1.711,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.6764705882352942,
1294
+ "grad_norm": 0.11906450986862183,
1295
+ "learning_rate": 3.928771470408092e-06,
1296
+ "loss": 1.7453,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.6801470588235294,
1301
+ "grad_norm": 0.1260623037815094,
1302
+ "learning_rate": 3.916327361836536e-06,
1303
+ "loss": 1.8312,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.6838235294117647,
1308
+ "grad_norm": 0.11971792578697205,
1309
+ "learning_rate": 3.903831358045994e-06,
1310
+ "loss": 1.6005,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.6875,
1315
+ "grad_norm": 0.12143218517303467,
1316
+ "learning_rate": 3.891283916898729e-06,
1317
+ "loss": 1.7532,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.6911764705882353,
1322
+ "grad_norm": 0.13371998071670532,
1323
+ "learning_rate": 3.8786854981417064e-06,
1324
+ "loss": 1.7866,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.6948529411764706,
1329
+ "grad_norm": 0.13985855877399445,
1330
+ "learning_rate": 3.866036563389747e-06,
1331
+ "loss": 1.7175,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.6985294117647058,
1336
+ "grad_norm": 0.11457841098308563,
1337
+ "learning_rate": 3.85333757610861e-06,
1338
+ "loss": 2.0277,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.7022058823529411,
1343
+ "grad_norm": 0.1197565421462059,
1344
+ "learning_rate": 3.840589001598018e-06,
1345
+ "loss": 1.939,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.7058823529411765,
1350
+ "grad_norm": 0.117172010242939,
1351
+ "learning_rate": 3.827791306974602e-06,
1352
+ "loss": 1.8403,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.7095588235294118,
1357
+ "grad_norm": 0.11386429518461227,
1358
+ "learning_rate": 3.814944961154788e-06,
1359
+ "loss": 1.8311,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.7132352941176471,
1364
+ "grad_norm": 0.11297334730625153,
1365
+ "learning_rate": 3.802050434837615e-06,
1366
+ "loss": 1.8393,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.7169117647058824,
1371
+ "grad_norm": 0.11836741119623184,
1372
+ "learning_rate": 3.789108200487493e-06,
1373
+ "loss": 1.7931,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.7205882352941176,
1378
+ "grad_norm": 0.1100229024887085,
1379
+ "learning_rate": 3.77611873231688e-06,
1380
+ "loss": 1.8247,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.7242647058823529,
1385
+ "grad_norm": 0.13370762765407562,
1386
+ "learning_rate": 3.763082506268922e-06,
1387
+ "loss": 1.5297,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.7279411764705882,
1392
+ "grad_norm": 0.11646929383277893,
1393
+ "learning_rate": 3.7500000000000005e-06,
1394
+ "loss": 1.6622,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.7316176470588235,
1399
+ "grad_norm": 0.17706073820590973,
1400
+ "learning_rate": 3.736871692862239e-06,
1401
+ "loss": 1.7438,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.7352941176470589,
1406
+ "grad_norm": 0.1213546171784401,
1407
+ "learning_rate": 3.723698065885936e-06,
1408
+ "loss": 1.5792,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 0.7389705882352942,
1413
+ "grad_norm": 0.11523102223873138,
1414
+ "learning_rate": 3.7104796017619416e-06,
1415
+ "loss": 1.8361,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 0.7426470588235294,
1420
+ "grad_norm": 0.11374305188655853,
1421
+ "learning_rate": 3.6972167848239677e-06,
1422
+ "loss": 1.7189,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 0.7463235294117647,
1427
+ "grad_norm": 0.2544911503791809,
1428
+ "learning_rate": 3.683910101030846e-06,
1429
+ "loss": 1.7848,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 0.75,
1434
+ "grad_norm": 0.11955133825540543,
1435
+ "learning_rate": 3.6705600379487204e-06,
1436
+ "loss": 1.8594,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 0.7536764705882353,
1441
+ "grad_norm": 0.11935199052095413,
1442
+ "learning_rate": 3.6571670847331802e-06,
1443
+ "loss": 1.9072,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 0.7573529411764706,
1448
+ "grad_norm": 0.12341475486755371,
1449
+ "learning_rate": 3.6437317321113415e-06,
1450
+ "loss": 1.6725,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 0.7610294117647058,
1455
+ "grad_norm": 0.1144358366727829,
1456
+ "learning_rate": 3.6302544723638623e-06,
1457
+ "loss": 1.7683,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 0.7647058823529411,
1462
+ "grad_norm": 0.11911847442388535,
1463
+ "learning_rate": 3.6167357993069075e-06,
1464
+ "loss": 1.7537,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 0.7683823529411765,
1469
+ "grad_norm": 0.11903777718544006,
1470
+ "learning_rate": 3.603176208274054e-06,
1471
+ "loss": 1.8182,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 0.7720588235294118,
1476
+ "grad_norm": 0.1177648976445198,
1477
+ "learning_rate": 3.5895761960981423e-06,
1478
+ "loss": 1.8037,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 0.7757352941176471,
1483
+ "grad_norm": 0.11667867004871368,
1484
+ "learning_rate": 3.5759362610930733e-06,
1485
+ "loss": 1.7944,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 0.7794117647058824,
1490
+ "grad_norm": 0.11360645294189453,
1491
+ "learning_rate": 3.5622569030355434e-06,
1492
+ "loss": 1.6972,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 0.7830882352941176,
1497
+ "grad_norm": 0.12743256986141205,
1498
+ "learning_rate": 3.5485386231467417e-06,
1499
+ "loss": 1.6698,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 0.7867647058823529,
1504
+ "grad_norm": 0.1186446100473404,
1505
+ "learning_rate": 3.5347819240739783e-06,
1506
+ "loss": 1.7351,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 0.7904411764705882,
1511
+ "grad_norm": 0.13953393697738647,
1512
+ "learning_rate": 3.5209873098722693e-06,
1513
+ "loss": 1.8201,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 0.7941176470588235,
1518
+ "grad_norm": 0.11326795816421509,
1519
+ "learning_rate": 3.507155285985866e-06,
1520
+ "loss": 1.7309,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 0.7977941176470589,
1525
+ "grad_norm": 0.11922699958086014,
1526
+ "learning_rate": 3.4932863592297393e-06,
1527
+ "loss": 1.7146,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 0.8014705882352942,
1532
+ "grad_norm": 0.13740628957748413,
1533
+ "learning_rate": 3.4793810377710048e-06,
1534
+ "loss": 1.7193,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 0.8051470588235294,
1539
+ "grad_norm": 0.12394211441278458,
1540
+ "learning_rate": 3.465439831110306e-06,
1541
+ "loss": 1.8768,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 0.8088235294117647,
1546
+ "grad_norm": 0.12386978417634964,
1547
+ "learning_rate": 3.451463250063146e-06,
1548
+ "loss": 1.5901,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 0.8125,
1553
+ "grad_norm": 0.12373729050159454,
1554
+ "learning_rate": 3.4374518067411674e-06,
1555
+ "loss": 1.712,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 0.8161764705882353,
1560
+ "grad_norm": 0.12053066492080688,
1561
+ "learning_rate": 3.4234060145333937e-06,
1562
+ "loss": 1.8149,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 0.8198529411764706,
1567
+ "grad_norm": 0.1302081197500229,
1568
+ "learning_rate": 3.409326388087414e-06,
1569
+ "loss": 1.8146,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 0.8235294117647058,
1574
+ "grad_norm": 0.12400317192077637,
1575
+ "learning_rate": 3.3952134432905275e-06,
1576
+ "loss": 1.6355,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 0.8272058823529411,
1581
+ "grad_norm": 0.1284218281507492,
1582
+ "learning_rate": 3.3810676972508405e-06,
1583
+ "loss": 1.8496,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 0.8308823529411765,
1588
+ "grad_norm": 0.12382645905017853,
1589
+ "learning_rate": 3.3668896682783216e-06,
1590
+ "loss": 1.7146,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 0.8345588235294118,
1595
+ "grad_norm": 0.12787872552871704,
1596
+ "learning_rate": 3.3526798758658062e-06,
1597
+ "loss": 1.8304,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 0.8382352941176471,
1602
+ "grad_norm": 0.16194690763950348,
1603
+ "learning_rate": 3.338438840669964e-06,
1604
+ "loss": 1.6469,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 0.8419117647058824,
1609
+ "grad_norm": 0.1237102746963501,
1610
+ "learning_rate": 3.324167084492226e-06,
1611
+ "loss": 1.7982,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 0.8455882352941176,
1616
+ "grad_norm": 0.12435570359230042,
1617
+ "learning_rate": 3.3098651302596565e-06,
1618
+ "loss": 1.7429,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 0.8492647058823529,
1623
+ "grad_norm": 0.12152646481990814,
1624
+ "learning_rate": 3.2955335020057994e-06,
1625
+ "loss": 1.8001,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 0.8529411764705882,
1630
+ "grad_norm": 0.11374185979366302,
1631
+ "learning_rate": 3.281172724851476e-06,
1632
+ "loss": 1.8071,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 0.8566176470588235,
1637
+ "grad_norm": 0.12285105139017105,
1638
+ "learning_rate": 3.266783324985543e-06,
1639
+ "loss": 1.6797,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 0.8602941176470589,
1644
+ "grad_norm": 0.12639090418815613,
1645
+ "learning_rate": 3.252365829645612e-06,
1646
+ "loss": 1.7243,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 0.8639705882352942,
1651
+ "grad_norm": 0.11098191887140274,
1652
+ "learning_rate": 3.2379207670987352e-06,
1653
+ "loss": 1.8761,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 0.8676470588235294,
1658
+ "grad_norm": 0.11968422681093216,
1659
+ "learning_rate": 3.2234486666220437e-06,
1660
+ "loss": 1.8813,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 0.8713235294117647,
1665
+ "grad_norm": 0.12833014130592346,
1666
+ "learning_rate": 3.2089500584833577e-06,
1667
+ "loss": 1.6301,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 0.875,
1672
+ "grad_norm": 0.1229129508137703,
1673
+ "learning_rate": 3.1944254739217584e-06,
1674
+ "loss": 1.8822,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 0.8786764705882353,
1679
+ "grad_norm": 0.12925758957862854,
1680
+ "learning_rate": 3.179875445128119e-06,
1681
+ "loss": 1.9632,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 0.8823529411764706,
1686
+ "grad_norm": 0.12624742090702057,
1687
+ "learning_rate": 3.165300505225608e-06,
1688
+ "loss": 1.7239,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 0.8860294117647058,
1693
+ "grad_norm": 0.1159316673874855,
1694
+ "learning_rate": 3.150701188250153e-06,
1695
+ "loss": 1.7914,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 0.8897058823529411,
1700
+ "grad_norm": 0.12504705786705017,
1701
+ "learning_rate": 3.136078029130877e-06,
1702
+ "loss": 1.9467,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 0.8933823529411765,
1707
+ "grad_norm": 0.12300896644592285,
1708
+ "learning_rate": 3.1214315636704928e-06,
1709
+ "loss": 1.8546,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 0.8970588235294118,
1714
+ "grad_norm": 0.15699361264705658,
1715
+ "learning_rate": 3.106762328525677e-06,
1716
+ "loss": 1.7644,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 0.9007352941176471,
1721
+ "grad_norm": 1.1493163108825684,
1722
+ "learning_rate": 3.0920708611874006e-06,
1723
+ "loss": 1.8477,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 0.9044117647058824,
1728
+ "grad_norm": 0.1137952208518982,
1729
+ "learning_rate": 3.0773576999612375e-06,
1730
+ "loss": 1.7101,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 0.9080882352941176,
1735
+ "grad_norm": 0.1225443109869957,
1736
+ "learning_rate": 3.0626233839476434e-06,
1737
+ "loss": 1.8754,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 0.9117647058823529,
1742
+ "grad_norm": 0.12916752696037292,
1743
+ "learning_rate": 3.0478684530221977e-06,
1744
+ "loss": 1.8084,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 0.9154411764705882,
1749
+ "grad_norm": 0.12458333373069763,
1750
+ "learning_rate": 3.033093447815825e-06,
1751
+ "loss": 1.9428,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 0.9191176470588235,
1756
+ "grad_norm": 0.1416483372449875,
1757
+ "learning_rate": 3.018298909694986e-06,
1758
+ "loss": 1.8178,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 0.9227941176470589,
1763
+ "grad_norm": 0.1401221603155136,
1764
+ "learning_rate": 3.0034853807418412e-06,
1765
+ "loss": 1.7829,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 0.9264705882352942,
1770
+ "grad_norm": 0.11938274651765823,
1771
+ "learning_rate": 2.9886534037343872e-06,
1772
+ "loss": 1.6625,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 0.9301470588235294,
1777
+ "grad_norm": 0.1268637776374817,
1778
+ "learning_rate": 2.973803522126571e-06,
1779
+ "loss": 1.7527,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 0.9338235294117647,
1784
+ "grad_norm": 0.13126443326473236,
1785
+ "learning_rate": 2.9589362800283774e-06,
1786
+ "loss": 1.6907,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 0.9375,
1791
+ "grad_norm": 0.13425901532173157,
1792
+ "learning_rate": 2.9440522221858886e-06,
1793
+ "loss": 1.7868,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 0.9411764705882353,
1798
+ "grad_norm": 0.12785860896110535,
1799
+ "learning_rate": 2.9291518939613317e-06,
1800
+ "loss": 1.8627,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 0.9448529411764706,
1805
+ "grad_norm": 0.12060689181089401,
1806
+ "learning_rate": 2.914235841313088e-06,
1807
+ "loss": 1.7925,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 0.9485294117647058,
1812
+ "grad_norm": 0.12087797373533249,
1813
+ "learning_rate": 2.899304610775695e-06,
1814
+ "loss": 1.741,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 0.9522058823529411,
1819
+ "grad_norm": 0.1257392317056656,
1820
+ "learning_rate": 2.8843587494398177e-06,
1821
+ "loss": 1.9245,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 0.9558823529411765,
1826
+ "grad_norm": 0.13595956563949585,
1827
+ "learning_rate": 2.869398804932204e-06,
1828
+ "loss": 1.6015,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 0.9595588235294118,
1833
+ "grad_norm": 0.11528779566287994,
1834
+ "learning_rate": 2.854425325395619e-06,
1835
+ "loss": 1.8843,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 0.9632352941176471,
1840
+ "grad_norm": 0.17899318039417267,
1841
+ "learning_rate": 2.83943885946876e-06,
1842
+ "loss": 1.7506,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 0.9669117647058824,
1847
+ "grad_norm": 0.12404326349496841,
1848
+ "learning_rate": 2.824439956266156e-06,
1849
+ "loss": 1.8862,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 0.9705882352941176,
1854
+ "grad_norm": 0.14045919477939606,
1855
+ "learning_rate": 2.809429165358045e-06,
1856
+ "loss": 1.6858,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 0.9742647058823529,
1861
+ "grad_norm": 0.1323767602443695,
1862
+ "learning_rate": 2.7944070367502404e-06,
1863
+ "loss": 1.7981,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 0.9779411764705882,
1868
+ "grad_norm": 0.1255924552679062,
1869
+ "learning_rate": 2.7793741208639746e-06,
1870
+ "loss": 1.8193,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 0.9816176470588235,
1875
+ "grad_norm": 0.13566090166568756,
1876
+ "learning_rate": 2.7643309685157355e-06,
1877
+ "loss": 1.8234,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 0.9852941176470589,
1882
+ "grad_norm": 0.14218254387378693,
1883
+ "learning_rate": 2.7492781308970805e-06,
1884
+ "loss": 1.6932,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 0.9889705882352942,
1889
+ "grad_norm": 0.14237117767333984,
1890
+ "learning_rate": 2.7342161595544443e-06,
1891
+ "loss": 1.9034,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 0.9926470588235294,
1896
+ "grad_norm": 0.1268174946308136,
1897
+ "learning_rate": 2.7191456063689235e-06,
1898
+ "loss": 1.7338,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 0.9963235294117647,
1903
+ "grad_norm": 0.11195939034223557,
1904
+ "learning_rate": 2.7040670235360643e-06,
1905
+ "loss": 1.7169,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 1.0,
1910
+ "grad_norm": 0.12390360236167908,
1911
+ "learning_rate": 2.688980963545621e-06,
1912
+ "loss": 1.5995,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 1.0036764705882353,
1917
+ "grad_norm": 0.13594205677509308,
1918
+ "learning_rate": 2.6738879791613183e-06,
1919
+ "loss": 1.881,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 1.0073529411764706,
1924
+ "grad_norm": 0.12911252677440643,
1925
+ "learning_rate": 2.658788623400595e-06,
1926
+ "loss": 1.96,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 1.0110294117647058,
1931
+ "grad_norm": 0.12003444135189056,
1932
+ "learning_rate": 2.6436834495143398e-06,
1933
+ "loss": 1.8635,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 1.0147058823529411,
1938
+ "grad_norm": 0.15043824911117554,
1939
+ "learning_rate": 2.6285730109666245e-06,
1940
+ "loss": 1.6302,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 1.0183823529411764,
1945
+ "grad_norm": 0.12194662541151047,
1946
+ "learning_rate": 2.61345786141442e-06,
1947
+ "loss": 1.8137,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 1.0220588235294117,
1952
+ "grad_norm": 0.13448664546012878,
1953
+ "learning_rate": 2.598338554687312e-06,
1954
+ "loss": 1.6858,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 1.025735294117647,
1959
+ "grad_norm": 0.12283740192651749,
1960
+ "learning_rate": 2.5832156447672074e-06,
1961
+ "loss": 1.6681,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 1.0294117647058822,
1966
+ "grad_norm": 0.1438128501176834,
1967
+ "learning_rate": 2.568089685768038e-06,
1968
+ "loss": 1.8845,
1969
+ "step": 280
1970
+ }
1971
+ ],
1972
+ "logging_steps": 1,
1973
+ "max_steps": 544,
1974
+ "num_input_tokens_seen": 0,
1975
+ "num_train_epochs": 2,
1976
+ "save_steps": 28,
1977
+ "stateful_callbacks": {
1978
+ "TrainerControl": {
1979
+ "args": {
1980
+ "should_epoch_stop": false,
1981
+ "should_evaluate": false,
1982
+ "should_log": false,
1983
+ "should_save": true,
1984
+ "should_training_stop": false
1985
+ },
1986
+ "attributes": {}
1987
+ }
1988
+ },
1989
+ "total_flos": 5.063239288435507e+18,
1990
+ "train_batch_size": 8,
1991
+ "trial_name": null,
1992
+ "trial_params": null
1993
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0451e796673a1b8ee3353adc0ad12f3b5b2a9e7e2f1c97e479211d9eb2958af5
3
+ size 7096