Fizzarolli commited on
Commit
e642053
·
verified ·
1 Parent(s): de1c2ab

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mistralai/Mistral-Small-24B-Instruct-2501",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 5120,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 32768,
14
+ "max_position_embeddings": 32768,
15
+ "model_type": "mistral",
16
+ "num_attention_heads": 32,
17
+ "num_hidden_layers": 40,
18
+ "num_key_value_heads": 8,
19
+ "rms_norm_eps": 1e-05,
20
+ "rope_theta": 100000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.49.0.dev0",
25
+ "use_cache": false,
26
+ "vocab_size": 131072
27
+ }
generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "do_sample": true,
5
+ "eos_token_id": 2,
6
+ "temperature": 0.15,
7
+ "transformers_version": "4.49.0.dev0"
8
+ }
model-00001-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1674817c9a2d1baab26eb8fea1420684a909b29a4649fccebd05a8afffbe7a10
3
+ size 4781571736
model-00002-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d3a344bcc67baf0ae7e364ccc1921abf272cf92dc9a8a0da286eacb174ebc69
3
+ size 4781592784
model-00003-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca5c750921f0aefc56dd720fbb6328bfbf15f609c498376a7b14fcd4f6e65d0e
3
+ size 4781592800
model-00004-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ecad22c4b02adda3484039d124372765195aa187f4bed14eefc86e47657f97c
3
+ size 4886471600
model-00005-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c5b752629b4fa187723e3be3a0f65a2b47df138c76905fe541542bd14739937
3
+ size 4781592824
model-00006-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbfb65111745671c2faaf7618050b818cbae99e609742a398ce23ea546295886
3
+ size 4781592816
model-00007-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef05ced5a5fbae498dcbf3a7937d30b0137e5d8ab8d46091f27a03d412313371
3
+ size 4886471600
model-00008-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a8638cde506c5844629931542ce9e6d85eb34cb160308e5c43049fd7733099a
3
+ size 4781592824
model-00009-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ede4a84153896b7d5091cf35074882628b51277b20a549b63d115623397a65f
3
+ size 4781592816
model-00010-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5866d63e2f443c02d28b70e4911fae53ce8c28a0e69f5f0faaf6615c4dd55ed9
3
+ size 3900777072
model.safetensors.index.json ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 47144806400
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00010-of-00010.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00010.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00010.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00010.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00010.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00010.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00010.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00010.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00010.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00010.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00010.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00010.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00003-of-00010.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00003-of-00010.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00004-of-00010.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00004-of-00010.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00004-of-00010.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00004-of-00010.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00004-of-00010.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00004-of-00010.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00004-of-00010.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00004-of-00010.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00004-of-00010.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00004-of-00010.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00004-of-00010.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00004-of-00010.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00004-of-00010.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00005-of-00010.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00005-of-00010.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00005-of-00010.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00005-of-00010.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00005-of-00010.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00005-of-00010.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00005-of-00010.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00005-of-00010.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00005-of-00010.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00005-of-00010.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00005-of-00010.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00005-of-00010.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00010.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00010.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00010.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00010.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00010.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00006-of-00010.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00006-of-00010.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00006-of-00010.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00006-of-00010.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00006-of-00010.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00006-of-00010.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00006-of-00010.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00006-of-00010.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00006-of-00010.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00006-of-00010.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00006-of-00010.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00007-of-00010.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00006-of-00010.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00007-of-00010.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00007-of-00010.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00007-of-00010.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00007-of-00010.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00007-of-00010.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00007-of-00010.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00007-of-00010.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00007-of-00010.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00007-of-00010.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00007-of-00010.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00007-of-00010.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00007-of-00010.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00008-of-00010.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00008-of-00010.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00008-of-00010.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00002-of-00010.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00002-of-00010.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00002-of-00010.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00008-of-00010.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00008-of-00010.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00008-of-00010.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00008-of-00010.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00008-of-00010.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00008-of-00010.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
242
+ "model.layers.32.input_layernorm.weight": "model-00008-of-00010.safetensors",
243
+ "model.layers.32.mlp.down_proj.weight": "model-00008-of-00010.safetensors",
244
+ "model.layers.32.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
245
+ "model.layers.32.mlp.up_proj.weight": "model-00008-of-00010.safetensors",
246
+ "model.layers.32.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
247
+ "model.layers.32.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
248
+ "model.layers.32.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
249
+ "model.layers.32.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
250
+ "model.layers.32.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
251
+ "model.layers.33.input_layernorm.weight": "model-00009-of-00010.safetensors",
252
+ "model.layers.33.mlp.down_proj.weight": "model-00009-of-00010.safetensors",
253
+ "model.layers.33.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
254
+ "model.layers.33.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
255
+ "model.layers.33.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
256
+ "model.layers.33.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
257
+ "model.layers.33.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
258
+ "model.layers.33.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
259
+ "model.layers.33.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
260
+ "model.layers.34.input_layernorm.weight": "model-00009-of-00010.safetensors",
261
+ "model.layers.34.mlp.down_proj.weight": "model-00009-of-00010.safetensors",
262
+ "model.layers.34.mlp.gate_proj.weight": "model-00009-of-00010.safetensors",
263
+ "model.layers.34.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
264
+ "model.layers.34.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
265
+ "model.layers.34.self_attn.k_proj.weight": "model-00009-of-00010.safetensors",
266
+ "model.layers.34.self_attn.o_proj.weight": "model-00009-of-00010.safetensors",
267
+ "model.layers.34.self_attn.q_proj.weight": "model-00009-of-00010.safetensors",
268
+ "model.layers.34.self_attn.v_proj.weight": "model-00009-of-00010.safetensors",
269
+ "model.layers.35.input_layernorm.weight": "model-00009-of-00010.safetensors",
270
+ "model.layers.35.mlp.down_proj.weight": "model-00009-of-00010.safetensors",
271
+ "model.layers.35.mlp.gate_proj.weight": "model-00009-of-00010.safetensors",
272
+ "model.layers.35.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
273
+ "model.layers.35.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
274
+ "model.layers.35.self_attn.k_proj.weight": "model-00009-of-00010.safetensors",
275
+ "model.layers.35.self_attn.o_proj.weight": "model-00009-of-00010.safetensors",
276
+ "model.layers.35.self_attn.q_proj.weight": "model-00009-of-00010.safetensors",
277
+ "model.layers.35.self_attn.v_proj.weight": "model-00009-of-00010.safetensors",
278
+ "model.layers.36.input_layernorm.weight": "model-00009-of-00010.safetensors",
279
+ "model.layers.36.mlp.down_proj.weight": "model-00009-of-00010.safetensors",
280
+ "model.layers.36.mlp.gate_proj.weight": "model-00009-of-00010.safetensors",
281
+ "model.layers.36.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
282
+ "model.layers.36.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
283
+ "model.layers.36.self_attn.k_proj.weight": "model-00009-of-00010.safetensors",
284
+ "model.layers.36.self_attn.o_proj.weight": "model-00009-of-00010.safetensors",
285
+ "model.layers.36.self_attn.q_proj.weight": "model-00009-of-00010.safetensors",
286
+ "model.layers.36.self_attn.v_proj.weight": "model-00009-of-00010.safetensors",
287
+ "model.layers.37.input_layernorm.weight": "model-00010-of-00010.safetensors",
288
+ "model.layers.37.mlp.down_proj.weight": "model-00010-of-00010.safetensors",
289
+ "model.layers.37.mlp.gate_proj.weight": "model-00009-of-00010.safetensors",
290
+ "model.layers.37.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
291
+ "model.layers.37.post_attention_layernorm.weight": "model-00010-of-00010.safetensors",
292
+ "model.layers.37.self_attn.k_proj.weight": "model-00009-of-00010.safetensors",
293
+ "model.layers.37.self_attn.o_proj.weight": "model-00009-of-00010.safetensors",
294
+ "model.layers.37.self_attn.q_proj.weight": "model-00009-of-00010.safetensors",
295
+ "model.layers.37.self_attn.v_proj.weight": "model-00009-of-00010.safetensors",
296
+ "model.layers.38.input_layernorm.weight": "model-00010-of-00010.safetensors",
297
+ "model.layers.38.mlp.down_proj.weight": "model-00010-of-00010.safetensors",
298
+ "model.layers.38.mlp.gate_proj.weight": "model-00010-of-00010.safetensors",
299
+ "model.layers.38.mlp.up_proj.weight": "model-00010-of-00010.safetensors",
300
+ "model.layers.38.post_attention_layernorm.weight": "model-00010-of-00010.safetensors",
301
+ "model.layers.38.self_attn.k_proj.weight": "model-00010-of-00010.safetensors",
302
+ "model.layers.38.self_attn.o_proj.weight": "model-00010-of-00010.safetensors",
303
+ "model.layers.38.self_attn.q_proj.weight": "model-00010-of-00010.safetensors",
304
+ "model.layers.38.self_attn.v_proj.weight": "model-00010-of-00010.safetensors",
305
+ "model.layers.39.input_layernorm.weight": "model-00010-of-00010.safetensors",
306
+ "model.layers.39.mlp.down_proj.weight": "model-00010-of-00010.safetensors",
307
+ "model.layers.39.mlp.gate_proj.weight": "model-00010-of-00010.safetensors",
308
+ "model.layers.39.mlp.up_proj.weight": "model-00010-of-00010.safetensors",
309
+ "model.layers.39.post_attention_layernorm.weight": "model-00010-of-00010.safetensors",
310
+ "model.layers.39.self_attn.k_proj.weight": "model-00010-of-00010.safetensors",
311
+ "model.layers.39.self_attn.o_proj.weight": "model-00010-of-00010.safetensors",
312
+ "model.layers.39.self_attn.q_proj.weight": "model-00010-of-00010.safetensors",
313
+ "model.layers.39.self_attn.v_proj.weight": "model-00010-of-00010.safetensors",
314
+ "model.layers.4.input_layernorm.weight": "model-00002-of-00010.safetensors",
315
+ "model.layers.4.mlp.down_proj.weight": "model-00002-of-00010.safetensors",
316
+ "model.layers.4.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
317
+ "model.layers.4.mlp.up_proj.weight": "model-00002-of-00010.safetensors",
318
+ "model.layers.4.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
319
+ "model.layers.4.self_attn.k_proj.weight": "model-00002-of-00010.safetensors",
320
+ "model.layers.4.self_attn.o_proj.weight": "model-00002-of-00010.safetensors",
321
+ "model.layers.4.self_attn.q_proj.weight": "model-00002-of-00010.safetensors",
322
+ "model.layers.4.self_attn.v_proj.weight": "model-00002-of-00010.safetensors",
323
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00010.safetensors",
324
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00010.safetensors",
325
+ "model.layers.5.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
326
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00010.safetensors",
327
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
328
+ "model.layers.5.self_attn.k_proj.weight": "model-00002-of-00010.safetensors",
329
+ "model.layers.5.self_attn.o_proj.weight": "model-00002-of-00010.safetensors",
330
+ "model.layers.5.self_attn.q_proj.weight": "model-00002-of-00010.safetensors",
331
+ "model.layers.5.self_attn.v_proj.weight": "model-00002-of-00010.safetensors",
332
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00010.safetensors",
333
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00010.safetensors",
334
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
335
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00010.safetensors",
336
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
337
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00010.safetensors",
338
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00010.safetensors",
339
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00010.safetensors",
340
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00010.safetensors",
341
+ "model.layers.7.input_layernorm.weight": "model-00003-of-00010.safetensors",
342
+ "model.layers.7.mlp.down_proj.weight": "model-00003-of-00010.safetensors",
343
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
344
+ "model.layers.7.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
345
+ "model.layers.7.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
346
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00010.safetensors",
347
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00010.safetensors",
348
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00010.safetensors",
349
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00010.safetensors",
350
+ "model.layers.8.input_layernorm.weight": "model-00003-of-00010.safetensors",
351
+ "model.layers.8.mlp.down_proj.weight": "model-00003-of-00010.safetensors",
352
+ "model.layers.8.mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
353
+ "model.layers.8.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
354
+ "model.layers.8.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
355
+ "model.layers.8.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
356
+ "model.layers.8.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
357
+ "model.layers.8.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
358
+ "model.layers.8.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
359
+ "model.layers.9.input_layernorm.weight": "model-00003-of-00010.safetensors",
360
+ "model.layers.9.mlp.down_proj.weight": "model-00003-of-00010.safetensors",
361
+ "model.layers.9.mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
362
+ "model.layers.9.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
363
+ "model.layers.9.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
364
+ "model.layers.9.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
365
+ "model.layers.9.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
366
+ "model.layers.9.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
367
+ "model.layers.9.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
368
+ "model.norm.weight": "model-00010-of-00010.safetensors"
369
+ }
370
+ }
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df5241d096dfc14e65ed605e11f0bd49844990a98f2fd9d3b114957fdda14428
3
+ size 936
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3cf9097d4513154245c48236b6ec5137b7ee2a21c9f58f2cba798ea275c6026f
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4862fea779065677abd4729ff1e4d49713b1afaa6376626d9c18e4b0e7ef4cb
3
+ size 1000
special_tokens_map.json ADDED
@@ -0,0 +1,1026 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<unk>",
4
+ "<s>",
5
+ "</s>",
6
+ "[INST]",
7
+ "[/INST]",
8
+ "[AVAILABLE_TOOLS]",
9
+ "[/AVAILABLE_TOOLS]",
10
+ "[TOOL_RESULTS]",
11
+ "[/TOOL_RESULTS]",
12
+ "[TOOL_CALLS]",
13
+ "[IMG]",
14
+ "<pad>",
15
+ "[IMG_BREAK]",
16
+ "[IMG_END]",
17
+ "[PREFIX]",
18
+ "[MIDDLE]",
19
+ "[SUFFIX]",
20
+ "[SYSTEM_PROMPT]",
21
+ "[/SYSTEM_PROMPT]",
22
+ "[TOOL_CONTENT]",
23
+ "<SPECIAL_20>",
24
+ "<SPECIAL_21>",
25
+ "<SPECIAL_22>",
26
+ "<SPECIAL_23>",
27
+ "<SPECIAL_24>",
28
+ "<SPECIAL_25>",
29
+ "<SPECIAL_26>",
30
+ "<SPECIAL_27>",
31
+ "<SPECIAL_28>",
32
+ "<SPECIAL_29>",
33
+ "<SPECIAL_30>",
34
+ "<SPECIAL_31>",
35
+ "<SPECIAL_32>",
36
+ "<SPECIAL_33>",
37
+ "<SPECIAL_34>",
38
+ "<SPECIAL_35>",
39
+ "<SPECIAL_36>",
40
+ "<SPECIAL_37>",
41
+ "<SPECIAL_38>",
42
+ "<SPECIAL_39>",
43
+ "<SPECIAL_40>",
44
+ "<SPECIAL_41>",
45
+ "<SPECIAL_42>",
46
+ "<SPECIAL_43>",
47
+ "<SPECIAL_44>",
48
+ "<SPECIAL_45>",
49
+ "<SPECIAL_46>",
50
+ "<SPECIAL_47>",
51
+ "<SPECIAL_48>",
52
+ "<SPECIAL_49>",
53
+ "<SPECIAL_50>",
54
+ "<SPECIAL_51>",
55
+ "<SPECIAL_52>",
56
+ "<SPECIAL_53>",
57
+ "<SPECIAL_54>",
58
+ "<SPECIAL_55>",
59
+ "<SPECIAL_56>",
60
+ "<SPECIAL_57>",
61
+ "<SPECIAL_58>",
62
+ "<SPECIAL_59>",
63
+ "<SPECIAL_60>",
64
+ "<SPECIAL_61>",
65
+ "<SPECIAL_62>",
66
+ "<SPECIAL_63>",
67
+ "<SPECIAL_64>",
68
+ "<SPECIAL_65>",
69
+ "<SPECIAL_66>",
70
+ "<SPECIAL_67>",
71
+ "<SPECIAL_68>",
72
+ "<SPECIAL_69>",
73
+ "<SPECIAL_70>",
74
+ "<SPECIAL_71>",
75
+ "<SPECIAL_72>",
76
+ "<SPECIAL_73>",
77
+ "<SPECIAL_74>",
78
+ "<SPECIAL_75>",
79
+ "<SPECIAL_76>",
80
+ "<SPECIAL_77>",
81
+ "<SPECIAL_78>",
82
+ "<SPECIAL_79>",
83
+ "<SPECIAL_80>",
84
+ "<SPECIAL_81>",
85
+ "<SPECIAL_82>",
86
+ "<SPECIAL_83>",
87
+ "<SPECIAL_84>",
88
+ "<SPECIAL_85>",
89
+ "<SPECIAL_86>",
90
+ "<SPECIAL_87>",
91
+ "<SPECIAL_88>",
92
+ "<SPECIAL_89>",
93
+ "<SPECIAL_90>",
94
+ "<SPECIAL_91>",
95
+ "<SPECIAL_92>",
96
+ "<SPECIAL_93>",
97
+ "<SPECIAL_94>",
98
+ "<SPECIAL_95>",
99
+ "<SPECIAL_96>",
100
+ "<SPECIAL_97>",
101
+ "<SPECIAL_98>",
102
+ "<SPECIAL_99>",
103
+ "<SPECIAL_100>",
104
+ "<SPECIAL_101>",
105
+ "<SPECIAL_102>",
106
+ "<SPECIAL_103>",
107
+ "<SPECIAL_104>",
108
+ "<SPECIAL_105>",
109
+ "<SPECIAL_106>",
110
+ "<SPECIAL_107>",
111
+ "<SPECIAL_108>",
112
+ "<SPECIAL_109>",
113
+ "<SPECIAL_110>",
114
+ "<SPECIAL_111>",
115
+ "<SPECIAL_112>",
116
+ "<SPECIAL_113>",
117
+ "<SPECIAL_114>",
118
+ "<SPECIAL_115>",
119
+ "<SPECIAL_116>",
120
+ "<SPECIAL_117>",
121
+ "<SPECIAL_118>",
122
+ "<SPECIAL_119>",
123
+ "<SPECIAL_120>",
124
+ "<SPECIAL_121>",
125
+ "<SPECIAL_122>",
126
+ "<SPECIAL_123>",
127
+ "<SPECIAL_124>",
128
+ "<SPECIAL_125>",
129
+ "<SPECIAL_126>",
130
+ "<SPECIAL_127>",
131
+ "<SPECIAL_128>",
132
+ "<SPECIAL_129>",
133
+ "<SPECIAL_130>",
134
+ "<SPECIAL_131>",
135
+ "<SPECIAL_132>",
136
+ "<SPECIAL_133>",
137
+ "<SPECIAL_134>",
138
+ "<SPECIAL_135>",
139
+ "<SPECIAL_136>",
140
+ "<SPECIAL_137>",
141
+ "<SPECIAL_138>",
142
+ "<SPECIAL_139>",
143
+ "<SPECIAL_140>",
144
+ "<SPECIAL_141>",
145
+ "<SPECIAL_142>",
146
+ "<SPECIAL_143>",
147
+ "<SPECIAL_144>",
148
+ "<SPECIAL_145>",
149
+ "<SPECIAL_146>",
150
+ "<SPECIAL_147>",
151
+ "<SPECIAL_148>",
152
+ "<SPECIAL_149>",
153
+ "<SPECIAL_150>",
154
+ "<SPECIAL_151>",
155
+ "<SPECIAL_152>",
156
+ "<SPECIAL_153>",
157
+ "<SPECIAL_154>",
158
+ "<SPECIAL_155>",
159
+ "<SPECIAL_156>",
160
+ "<SPECIAL_157>",
161
+ "<SPECIAL_158>",
162
+ "<SPECIAL_159>",
163
+ "<SPECIAL_160>",
164
+ "<SPECIAL_161>",
165
+ "<SPECIAL_162>",
166
+ "<SPECIAL_163>",
167
+ "<SPECIAL_164>",
168
+ "<SPECIAL_165>",
169
+ "<SPECIAL_166>",
170
+ "<SPECIAL_167>",
171
+ "<SPECIAL_168>",
172
+ "<SPECIAL_169>",
173
+ "<SPECIAL_170>",
174
+ "<SPECIAL_171>",
175
+ "<SPECIAL_172>",
176
+ "<SPECIAL_173>",
177
+ "<SPECIAL_174>",
178
+ "<SPECIAL_175>",
179
+ "<SPECIAL_176>",
180
+ "<SPECIAL_177>",
181
+ "<SPECIAL_178>",
182
+ "<SPECIAL_179>",
183
+ "<SPECIAL_180>",
184
+ "<SPECIAL_181>",
185
+ "<SPECIAL_182>",
186
+ "<SPECIAL_183>",
187
+ "<SPECIAL_184>",
188
+ "<SPECIAL_185>",
189
+ "<SPECIAL_186>",
190
+ "<SPECIAL_187>",
191
+ "<SPECIAL_188>",
192
+ "<SPECIAL_189>",
193
+ "<SPECIAL_190>",
194
+ "<SPECIAL_191>",
195
+ "<SPECIAL_192>",
196
+ "<SPECIAL_193>",
197
+ "<SPECIAL_194>",
198
+ "<SPECIAL_195>",
199
+ "<SPECIAL_196>",
200
+ "<SPECIAL_197>",
201
+ "<SPECIAL_198>",
202
+ "<SPECIAL_199>",
203
+ "<SPECIAL_200>",
204
+ "<SPECIAL_201>",
205
+ "<SPECIAL_202>",
206
+ "<SPECIAL_203>",
207
+ "<SPECIAL_204>",
208
+ "<SPECIAL_205>",
209
+ "<SPECIAL_206>",
210
+ "<SPECIAL_207>",
211
+ "<SPECIAL_208>",
212
+ "<SPECIAL_209>",
213
+ "<SPECIAL_210>",
214
+ "<SPECIAL_211>",
215
+ "<SPECIAL_212>",
216
+ "<SPECIAL_213>",
217
+ "<SPECIAL_214>",
218
+ "<SPECIAL_215>",
219
+ "<SPECIAL_216>",
220
+ "<SPECIAL_217>",
221
+ "<SPECIAL_218>",
222
+ "<SPECIAL_219>",
223
+ "<SPECIAL_220>",
224
+ "<SPECIAL_221>",
225
+ "<SPECIAL_222>",
226
+ "<SPECIAL_223>",
227
+ "<SPECIAL_224>",
228
+ "<SPECIAL_225>",
229
+ "<SPECIAL_226>",
230
+ "<SPECIAL_227>",
231
+ "<SPECIAL_228>",
232
+ "<SPECIAL_229>",
233
+ "<SPECIAL_230>",
234
+ "<SPECIAL_231>",
235
+ "<SPECIAL_232>",
236
+ "<SPECIAL_233>",
237
+ "<SPECIAL_234>",
238
+ "<SPECIAL_235>",
239
+ "<SPECIAL_236>",
240
+ "<SPECIAL_237>",
241
+ "<SPECIAL_238>",
242
+ "<SPECIAL_239>",
243
+ "<SPECIAL_240>",
244
+ "<SPECIAL_241>",
245
+ "<SPECIAL_242>",
246
+ "<SPECIAL_243>",
247
+ "<SPECIAL_244>",
248
+ "<SPECIAL_245>",
249
+ "<SPECIAL_246>",
250
+ "<SPECIAL_247>",
251
+ "<SPECIAL_248>",
252
+ "<SPECIAL_249>",
253
+ "<SPECIAL_250>",
254
+ "<SPECIAL_251>",
255
+ "<SPECIAL_252>",
256
+ "<SPECIAL_253>",
257
+ "<SPECIAL_254>",
258
+ "<SPECIAL_255>",
259
+ "<SPECIAL_256>",
260
+ "<SPECIAL_257>",
261
+ "<SPECIAL_258>",
262
+ "<SPECIAL_259>",
263
+ "<SPECIAL_260>",
264
+ "<SPECIAL_261>",
265
+ "<SPECIAL_262>",
266
+ "<SPECIAL_263>",
267
+ "<SPECIAL_264>",
268
+ "<SPECIAL_265>",
269
+ "<SPECIAL_266>",
270
+ "<SPECIAL_267>",
271
+ "<SPECIAL_268>",
272
+ "<SPECIAL_269>",
273
+ "<SPECIAL_270>",
274
+ "<SPECIAL_271>",
275
+ "<SPECIAL_272>",
276
+ "<SPECIAL_273>",
277
+ "<SPECIAL_274>",
278
+ "<SPECIAL_275>",
279
+ "<SPECIAL_276>",
280
+ "<SPECIAL_277>",
281
+ "<SPECIAL_278>",
282
+ "<SPECIAL_279>",
283
+ "<SPECIAL_280>",
284
+ "<SPECIAL_281>",
285
+ "<SPECIAL_282>",
286
+ "<SPECIAL_283>",
287
+ "<SPECIAL_284>",
288
+ "<SPECIAL_285>",
289
+ "<SPECIAL_286>",
290
+ "<SPECIAL_287>",
291
+ "<SPECIAL_288>",
292
+ "<SPECIAL_289>",
293
+ "<SPECIAL_290>",
294
+ "<SPECIAL_291>",
295
+ "<SPECIAL_292>",
296
+ "<SPECIAL_293>",
297
+ "<SPECIAL_294>",
298
+ "<SPECIAL_295>",
299
+ "<SPECIAL_296>",
300
+ "<SPECIAL_297>",
301
+ "<SPECIAL_298>",
302
+ "<SPECIAL_299>",
303
+ "<SPECIAL_300>",
304
+ "<SPECIAL_301>",
305
+ "<SPECIAL_302>",
306
+ "<SPECIAL_303>",
307
+ "<SPECIAL_304>",
308
+ "<SPECIAL_305>",
309
+ "<SPECIAL_306>",
310
+ "<SPECIAL_307>",
311
+ "<SPECIAL_308>",
312
+ "<SPECIAL_309>",
313
+ "<SPECIAL_310>",
314
+ "<SPECIAL_311>",
315
+ "<SPECIAL_312>",
316
+ "<SPECIAL_313>",
317
+ "<SPECIAL_314>",
318
+ "<SPECIAL_315>",
319
+ "<SPECIAL_316>",
320
+ "<SPECIAL_317>",
321
+ "<SPECIAL_318>",
322
+ "<SPECIAL_319>",
323
+ "<SPECIAL_320>",
324
+ "<SPECIAL_321>",
325
+ "<SPECIAL_322>",
326
+ "<SPECIAL_323>",
327
+ "<SPECIAL_324>",
328
+ "<SPECIAL_325>",
329
+ "<SPECIAL_326>",
330
+ "<SPECIAL_327>",
331
+ "<SPECIAL_328>",
332
+ "<SPECIAL_329>",
333
+ "<SPECIAL_330>",
334
+ "<SPECIAL_331>",
335
+ "<SPECIAL_332>",
336
+ "<SPECIAL_333>",
337
+ "<SPECIAL_334>",
338
+ "<SPECIAL_335>",
339
+ "<SPECIAL_336>",
340
+ "<SPECIAL_337>",
341
+ "<SPECIAL_338>",
342
+ "<SPECIAL_339>",
343
+ "<SPECIAL_340>",
344
+ "<SPECIAL_341>",
345
+ "<SPECIAL_342>",
346
+ "<SPECIAL_343>",
347
+ "<SPECIAL_344>",
348
+ "<SPECIAL_345>",
349
+ "<SPECIAL_346>",
350
+ "<SPECIAL_347>",
351
+ "<SPECIAL_348>",
352
+ "<SPECIAL_349>",
353
+ "<SPECIAL_350>",
354
+ "<SPECIAL_351>",
355
+ "<SPECIAL_352>",
356
+ "<SPECIAL_353>",
357
+ "<SPECIAL_354>",
358
+ "<SPECIAL_355>",
359
+ "<SPECIAL_356>",
360
+ "<SPECIAL_357>",
361
+ "<SPECIAL_358>",
362
+ "<SPECIAL_359>",
363
+ "<SPECIAL_360>",
364
+ "<SPECIAL_361>",
365
+ "<SPECIAL_362>",
366
+ "<SPECIAL_363>",
367
+ "<SPECIAL_364>",
368
+ "<SPECIAL_365>",
369
+ "<SPECIAL_366>",
370
+ "<SPECIAL_367>",
371
+ "<SPECIAL_368>",
372
+ "<SPECIAL_369>",
373
+ "<SPECIAL_370>",
374
+ "<SPECIAL_371>",
375
+ "<SPECIAL_372>",
376
+ "<SPECIAL_373>",
377
+ "<SPECIAL_374>",
378
+ "<SPECIAL_375>",
379
+ "<SPECIAL_376>",
380
+ "<SPECIAL_377>",
381
+ "<SPECIAL_378>",
382
+ "<SPECIAL_379>",
383
+ "<SPECIAL_380>",
384
+ "<SPECIAL_381>",
385
+ "<SPECIAL_382>",
386
+ "<SPECIAL_383>",
387
+ "<SPECIAL_384>",
388
+ "<SPECIAL_385>",
389
+ "<SPECIAL_386>",
390
+ "<SPECIAL_387>",
391
+ "<SPECIAL_388>",
392
+ "<SPECIAL_389>",
393
+ "<SPECIAL_390>",
394
+ "<SPECIAL_391>",
395
+ "<SPECIAL_392>",
396
+ "<SPECIAL_393>",
397
+ "<SPECIAL_394>",
398
+ "<SPECIAL_395>",
399
+ "<SPECIAL_396>",
400
+ "<SPECIAL_397>",
401
+ "<SPECIAL_398>",
402
+ "<SPECIAL_399>",
403
+ "<SPECIAL_400>",
404
+ "<SPECIAL_401>",
405
+ "<SPECIAL_402>",
406
+ "<SPECIAL_403>",
407
+ "<SPECIAL_404>",
408
+ "<SPECIAL_405>",
409
+ "<SPECIAL_406>",
410
+ "<SPECIAL_407>",
411
+ "<SPECIAL_408>",
412
+ "<SPECIAL_409>",
413
+ "<SPECIAL_410>",
414
+ "<SPECIAL_411>",
415
+ "<SPECIAL_412>",
416
+ "<SPECIAL_413>",
417
+ "<SPECIAL_414>",
418
+ "<SPECIAL_415>",
419
+ "<SPECIAL_416>",
420
+ "<SPECIAL_417>",
421
+ "<SPECIAL_418>",
422
+ "<SPECIAL_419>",
423
+ "<SPECIAL_420>",
424
+ "<SPECIAL_421>",
425
+ "<SPECIAL_422>",
426
+ "<SPECIAL_423>",
427
+ "<SPECIAL_424>",
428
+ "<SPECIAL_425>",
429
+ "<SPECIAL_426>",
430
+ "<SPECIAL_427>",
431
+ "<SPECIAL_428>",
432
+ "<SPECIAL_429>",
433
+ "<SPECIAL_430>",
434
+ "<SPECIAL_431>",
435
+ "<SPECIAL_432>",
436
+ "<SPECIAL_433>",
437
+ "<SPECIAL_434>",
438
+ "<SPECIAL_435>",
439
+ "<SPECIAL_436>",
440
+ "<SPECIAL_437>",
441
+ "<SPECIAL_438>",
442
+ "<SPECIAL_439>",
443
+ "<SPECIAL_440>",
444
+ "<SPECIAL_441>",
445
+ "<SPECIAL_442>",
446
+ "<SPECIAL_443>",
447
+ "<SPECIAL_444>",
448
+ "<SPECIAL_445>",
449
+ "<SPECIAL_446>",
450
+ "<SPECIAL_447>",
451
+ "<SPECIAL_448>",
452
+ "<SPECIAL_449>",
453
+ "<SPECIAL_450>",
454
+ "<SPECIAL_451>",
455
+ "<SPECIAL_452>",
456
+ "<SPECIAL_453>",
457
+ "<SPECIAL_454>",
458
+ "<SPECIAL_455>",
459
+ "<SPECIAL_456>",
460
+ "<SPECIAL_457>",
461
+ "<SPECIAL_458>",
462
+ "<SPECIAL_459>",
463
+ "<SPECIAL_460>",
464
+ "<SPECIAL_461>",
465
+ "<SPECIAL_462>",
466
+ "<SPECIAL_463>",
467
+ "<SPECIAL_464>",
468
+ "<SPECIAL_465>",
469
+ "<SPECIAL_466>",
470
+ "<SPECIAL_467>",
471
+ "<SPECIAL_468>",
472
+ "<SPECIAL_469>",
473
+ "<SPECIAL_470>",
474
+ "<SPECIAL_471>",
475
+ "<SPECIAL_472>",
476
+ "<SPECIAL_473>",
477
+ "<SPECIAL_474>",
478
+ "<SPECIAL_475>",
479
+ "<SPECIAL_476>",
480
+ "<SPECIAL_477>",
481
+ "<SPECIAL_478>",
482
+ "<SPECIAL_479>",
483
+ "<SPECIAL_480>",
484
+ "<SPECIAL_481>",
485
+ "<SPECIAL_482>",
486
+ "<SPECIAL_483>",
487
+ "<SPECIAL_484>",
488
+ "<SPECIAL_485>",
489
+ "<SPECIAL_486>",
490
+ "<SPECIAL_487>",
491
+ "<SPECIAL_488>",
492
+ "<SPECIAL_489>",
493
+ "<SPECIAL_490>",
494
+ "<SPECIAL_491>",
495
+ "<SPECIAL_492>",
496
+ "<SPECIAL_493>",
497
+ "<SPECIAL_494>",
498
+ "<SPECIAL_495>",
499
+ "<SPECIAL_496>",
500
+ "<SPECIAL_497>",
501
+ "<SPECIAL_498>",
502
+ "<SPECIAL_499>",
503
+ "<SPECIAL_500>",
504
+ "<SPECIAL_501>",
505
+ "<SPECIAL_502>",
506
+ "<SPECIAL_503>",
507
+ "<SPECIAL_504>",
508
+ "<SPECIAL_505>",
509
+ "<SPECIAL_506>",
510
+ "<SPECIAL_507>",
511
+ "<SPECIAL_508>",
512
+ "<SPECIAL_509>",
513
+ "<SPECIAL_510>",
514
+ "<SPECIAL_511>",
515
+ "<SPECIAL_512>",
516
+ "<SPECIAL_513>",
517
+ "<SPECIAL_514>",
518
+ "<SPECIAL_515>",
519
+ "<SPECIAL_516>",
520
+ "<SPECIAL_517>",
521
+ "<SPECIAL_518>",
522
+ "<SPECIAL_519>",
523
+ "<SPECIAL_520>",
524
+ "<SPECIAL_521>",
525
+ "<SPECIAL_522>",
526
+ "<SPECIAL_523>",
527
+ "<SPECIAL_524>",
528
+ "<SPECIAL_525>",
529
+ "<SPECIAL_526>",
530
+ "<SPECIAL_527>",
531
+ "<SPECIAL_528>",
532
+ "<SPECIAL_529>",
533
+ "<SPECIAL_530>",
534
+ "<SPECIAL_531>",
535
+ "<SPECIAL_532>",
536
+ "<SPECIAL_533>",
537
+ "<SPECIAL_534>",
538
+ "<SPECIAL_535>",
539
+ "<SPECIAL_536>",
540
+ "<SPECIAL_537>",
541
+ "<SPECIAL_538>",
542
+ "<SPECIAL_539>",
543
+ "<SPECIAL_540>",
544
+ "<SPECIAL_541>",
545
+ "<SPECIAL_542>",
546
+ "<SPECIAL_543>",
547
+ "<SPECIAL_544>",
548
+ "<SPECIAL_545>",
549
+ "<SPECIAL_546>",
550
+ "<SPECIAL_547>",
551
+ "<SPECIAL_548>",
552
+ "<SPECIAL_549>",
553
+ "<SPECIAL_550>",
554
+ "<SPECIAL_551>",
555
+ "<SPECIAL_552>",
556
+ "<SPECIAL_553>",
557
+ "<SPECIAL_554>",
558
+ "<SPECIAL_555>",
559
+ "<SPECIAL_556>",
560
+ "<SPECIAL_557>",
561
+ "<SPECIAL_558>",
562
+ "<SPECIAL_559>",
563
+ "<SPECIAL_560>",
564
+ "<SPECIAL_561>",
565
+ "<SPECIAL_562>",
566
+ "<SPECIAL_563>",
567
+ "<SPECIAL_564>",
568
+ "<SPECIAL_565>",
569
+ "<SPECIAL_566>",
570
+ "<SPECIAL_567>",
571
+ "<SPECIAL_568>",
572
+ "<SPECIAL_569>",
573
+ "<SPECIAL_570>",
574
+ "<SPECIAL_571>",
575
+ "<SPECIAL_572>",
576
+ "<SPECIAL_573>",
577
+ "<SPECIAL_574>",
578
+ "<SPECIAL_575>",
579
+ "<SPECIAL_576>",
580
+ "<SPECIAL_577>",
581
+ "<SPECIAL_578>",
582
+ "<SPECIAL_579>",
583
+ "<SPECIAL_580>",
584
+ "<SPECIAL_581>",
585
+ "<SPECIAL_582>",
586
+ "<SPECIAL_583>",
587
+ "<SPECIAL_584>",
588
+ "<SPECIAL_585>",
589
+ "<SPECIAL_586>",
590
+ "<SPECIAL_587>",
591
+ "<SPECIAL_588>",
592
+ "<SPECIAL_589>",
593
+ "<SPECIAL_590>",
594
+ "<SPECIAL_591>",
595
+ "<SPECIAL_592>",
596
+ "<SPECIAL_593>",
597
+ "<SPECIAL_594>",
598
+ "<SPECIAL_595>",
599
+ "<SPECIAL_596>",
600
+ "<SPECIAL_597>",
601
+ "<SPECIAL_598>",
602
+ "<SPECIAL_599>",
603
+ "<SPECIAL_600>",
604
+ "<SPECIAL_601>",
605
+ "<SPECIAL_602>",
606
+ "<SPECIAL_603>",
607
+ "<SPECIAL_604>",
608
+ "<SPECIAL_605>",
609
+ "<SPECIAL_606>",
610
+ "<SPECIAL_607>",
611
+ "<SPECIAL_608>",
612
+ "<SPECIAL_609>",
613
+ "<SPECIAL_610>",
614
+ "<SPECIAL_611>",
615
+ "<SPECIAL_612>",
616
+ "<SPECIAL_613>",
617
+ "<SPECIAL_614>",
618
+ "<SPECIAL_615>",
619
+ "<SPECIAL_616>",
620
+ "<SPECIAL_617>",
621
+ "<SPECIAL_618>",
622
+ "<SPECIAL_619>",
623
+ "<SPECIAL_620>",
624
+ "<SPECIAL_621>",
625
+ "<SPECIAL_622>",
626
+ "<SPECIAL_623>",
627
+ "<SPECIAL_624>",
628
+ "<SPECIAL_625>",
629
+ "<SPECIAL_626>",
630
+ "<SPECIAL_627>",
631
+ "<SPECIAL_628>",
632
+ "<SPECIAL_629>",
633
+ "<SPECIAL_630>",
634
+ "<SPECIAL_631>",
635
+ "<SPECIAL_632>",
636
+ "<SPECIAL_633>",
637
+ "<SPECIAL_634>",
638
+ "<SPECIAL_635>",
639
+ "<SPECIAL_636>",
640
+ "<SPECIAL_637>",
641
+ "<SPECIAL_638>",
642
+ "<SPECIAL_639>",
643
+ "<SPECIAL_640>",
644
+ "<SPECIAL_641>",
645
+ "<SPECIAL_642>",
646
+ "<SPECIAL_643>",
647
+ "<SPECIAL_644>",
648
+ "<SPECIAL_645>",
649
+ "<SPECIAL_646>",
650
+ "<SPECIAL_647>",
651
+ "<SPECIAL_648>",
652
+ "<SPECIAL_649>",
653
+ "<SPECIAL_650>",
654
+ "<SPECIAL_651>",
655
+ "<SPECIAL_652>",
656
+ "<SPECIAL_653>",
657
+ "<SPECIAL_654>",
658
+ "<SPECIAL_655>",
659
+ "<SPECIAL_656>",
660
+ "<SPECIAL_657>",
661
+ "<SPECIAL_658>",
662
+ "<SPECIAL_659>",
663
+ "<SPECIAL_660>",
664
+ "<SPECIAL_661>",
665
+ "<SPECIAL_662>",
666
+ "<SPECIAL_663>",
667
+ "<SPECIAL_664>",
668
+ "<SPECIAL_665>",
669
+ "<SPECIAL_666>",
670
+ "<SPECIAL_667>",
671
+ "<SPECIAL_668>",
672
+ "<SPECIAL_669>",
673
+ "<SPECIAL_670>",
674
+ "<SPECIAL_671>",
675
+ "<SPECIAL_672>",
676
+ "<SPECIAL_673>",
677
+ "<SPECIAL_674>",
678
+ "<SPECIAL_675>",
679
+ "<SPECIAL_676>",
680
+ "<SPECIAL_677>",
681
+ "<SPECIAL_678>",
682
+ "<SPECIAL_679>",
683
+ "<SPECIAL_680>",
684
+ "<SPECIAL_681>",
685
+ "<SPECIAL_682>",
686
+ "<SPECIAL_683>",
687
+ "<SPECIAL_684>",
688
+ "<SPECIAL_685>",
689
+ "<SPECIAL_686>",
690
+ "<SPECIAL_687>",
691
+ "<SPECIAL_688>",
692
+ "<SPECIAL_689>",
693
+ "<SPECIAL_690>",
694
+ "<SPECIAL_691>",
695
+ "<SPECIAL_692>",
696
+ "<SPECIAL_693>",
697
+ "<SPECIAL_694>",
698
+ "<SPECIAL_695>",
699
+ "<SPECIAL_696>",
700
+ "<SPECIAL_697>",
701
+ "<SPECIAL_698>",
702
+ "<SPECIAL_699>",
703
+ "<SPECIAL_700>",
704
+ "<SPECIAL_701>",
705
+ "<SPECIAL_702>",
706
+ "<SPECIAL_703>",
707
+ "<SPECIAL_704>",
708
+ "<SPECIAL_705>",
709
+ "<SPECIAL_706>",
710
+ "<SPECIAL_707>",
711
+ "<SPECIAL_708>",
712
+ "<SPECIAL_709>",
713
+ "<SPECIAL_710>",
714
+ "<SPECIAL_711>",
715
+ "<SPECIAL_712>",
716
+ "<SPECIAL_713>",
717
+ "<SPECIAL_714>",
718
+ "<SPECIAL_715>",
719
+ "<SPECIAL_716>",
720
+ "<SPECIAL_717>",
721
+ "<SPECIAL_718>",
722
+ "<SPECIAL_719>",
723
+ "<SPECIAL_720>",
724
+ "<SPECIAL_721>",
725
+ "<SPECIAL_722>",
726
+ "<SPECIAL_723>",
727
+ "<SPECIAL_724>",
728
+ "<SPECIAL_725>",
729
+ "<SPECIAL_726>",
730
+ "<SPECIAL_727>",
731
+ "<SPECIAL_728>",
732
+ "<SPECIAL_729>",
733
+ "<SPECIAL_730>",
734
+ "<SPECIAL_731>",
735
+ "<SPECIAL_732>",
736
+ "<SPECIAL_733>",
737
+ "<SPECIAL_734>",
738
+ "<SPECIAL_735>",
739
+ "<SPECIAL_736>",
740
+ "<SPECIAL_737>",
741
+ "<SPECIAL_738>",
742
+ "<SPECIAL_739>",
743
+ "<SPECIAL_740>",
744
+ "<SPECIAL_741>",
745
+ "<SPECIAL_742>",
746
+ "<SPECIAL_743>",
747
+ "<SPECIAL_744>",
748
+ "<SPECIAL_745>",
749
+ "<SPECIAL_746>",
750
+ "<SPECIAL_747>",
751
+ "<SPECIAL_748>",
752
+ "<SPECIAL_749>",
753
+ "<SPECIAL_750>",
754
+ "<SPECIAL_751>",
755
+ "<SPECIAL_752>",
756
+ "<SPECIAL_753>",
757
+ "<SPECIAL_754>",
758
+ "<SPECIAL_755>",
759
+ "<SPECIAL_756>",
760
+ "<SPECIAL_757>",
761
+ "<SPECIAL_758>",
762
+ "<SPECIAL_759>",
763
+ "<SPECIAL_760>",
764
+ "<SPECIAL_761>",
765
+ "<SPECIAL_762>",
766
+ "<SPECIAL_763>",
767
+ "<SPECIAL_764>",
768
+ "<SPECIAL_765>",
769
+ "<SPECIAL_766>",
770
+ "<SPECIAL_767>",
771
+ "<SPECIAL_768>",
772
+ "<SPECIAL_769>",
773
+ "<SPECIAL_770>",
774
+ "<SPECIAL_771>",
775
+ "<SPECIAL_772>",
776
+ "<SPECIAL_773>",
777
+ "<SPECIAL_774>",
778
+ "<SPECIAL_775>",
779
+ "<SPECIAL_776>",
780
+ "<SPECIAL_777>",
781
+ "<SPECIAL_778>",
782
+ "<SPECIAL_779>",
783
+ "<SPECIAL_780>",
784
+ "<SPECIAL_781>",
785
+ "<SPECIAL_782>",
786
+ "<SPECIAL_783>",
787
+ "<SPECIAL_784>",
788
+ "<SPECIAL_785>",
789
+ "<SPECIAL_786>",
790
+ "<SPECIAL_787>",
791
+ "<SPECIAL_788>",
792
+ "<SPECIAL_789>",
793
+ "<SPECIAL_790>",
794
+ "<SPECIAL_791>",
795
+ "<SPECIAL_792>",
796
+ "<SPECIAL_793>",
797
+ "<SPECIAL_794>",
798
+ "<SPECIAL_795>",
799
+ "<SPECIAL_796>",
800
+ "<SPECIAL_797>",
801
+ "<SPECIAL_798>",
802
+ "<SPECIAL_799>",
803
+ "<SPECIAL_800>",
804
+ "<SPECIAL_801>",
805
+ "<SPECIAL_802>",
806
+ "<SPECIAL_803>",
807
+ "<SPECIAL_804>",
808
+ "<SPECIAL_805>",
809
+ "<SPECIAL_806>",
810
+ "<SPECIAL_807>",
811
+ "<SPECIAL_808>",
812
+ "<SPECIAL_809>",
813
+ "<SPECIAL_810>",
814
+ "<SPECIAL_811>",
815
+ "<SPECIAL_812>",
816
+ "<SPECIAL_813>",
817
+ "<SPECIAL_814>",
818
+ "<SPECIAL_815>",
819
+ "<SPECIAL_816>",
820
+ "<SPECIAL_817>",
821
+ "<SPECIAL_818>",
822
+ "<SPECIAL_819>",
823
+ "<SPECIAL_820>",
824
+ "<SPECIAL_821>",
825
+ "<SPECIAL_822>",
826
+ "<SPECIAL_823>",
827
+ "<SPECIAL_824>",
828
+ "<SPECIAL_825>",
829
+ "<SPECIAL_826>",
830
+ "<SPECIAL_827>",
831
+ "<SPECIAL_828>",
832
+ "<SPECIAL_829>",
833
+ "<SPECIAL_830>",
834
+ "<SPECIAL_831>",
835
+ "<SPECIAL_832>",
836
+ "<SPECIAL_833>",
837
+ "<SPECIAL_834>",
838
+ "<SPECIAL_835>",
839
+ "<SPECIAL_836>",
840
+ "<SPECIAL_837>",
841
+ "<SPECIAL_838>",
842
+ "<SPECIAL_839>",
843
+ "<SPECIAL_840>",
844
+ "<SPECIAL_841>",
845
+ "<SPECIAL_842>",
846
+ "<SPECIAL_843>",
847
+ "<SPECIAL_844>",
848
+ "<SPECIAL_845>",
849
+ "<SPECIAL_846>",
850
+ "<SPECIAL_847>",
851
+ "<SPECIAL_848>",
852
+ "<SPECIAL_849>",
853
+ "<SPECIAL_850>",
854
+ "<SPECIAL_851>",
855
+ "<SPECIAL_852>",
856
+ "<SPECIAL_853>",
857
+ "<SPECIAL_854>",
858
+ "<SPECIAL_855>",
859
+ "<SPECIAL_856>",
860
+ "<SPECIAL_857>",
861
+ "<SPECIAL_858>",
862
+ "<SPECIAL_859>",
863
+ "<SPECIAL_860>",
864
+ "<SPECIAL_861>",
865
+ "<SPECIAL_862>",
866
+ "<SPECIAL_863>",
867
+ "<SPECIAL_864>",
868
+ "<SPECIAL_865>",
869
+ "<SPECIAL_866>",
870
+ "<SPECIAL_867>",
871
+ "<SPECIAL_868>",
872
+ "<SPECIAL_869>",
873
+ "<SPECIAL_870>",
874
+ "<SPECIAL_871>",
875
+ "<SPECIAL_872>",
876
+ "<SPECIAL_873>",
877
+ "<SPECIAL_874>",
878
+ "<SPECIAL_875>",
879
+ "<SPECIAL_876>",
880
+ "<SPECIAL_877>",
881
+ "<SPECIAL_878>",
882
+ "<SPECIAL_879>",
883
+ "<SPECIAL_880>",
884
+ "<SPECIAL_881>",
885
+ "<SPECIAL_882>",
886
+ "<SPECIAL_883>",
887
+ "<SPECIAL_884>",
888
+ "<SPECIAL_885>",
889
+ "<SPECIAL_886>",
890
+ "<SPECIAL_887>",
891
+ "<SPECIAL_888>",
892
+ "<SPECIAL_889>",
893
+ "<SPECIAL_890>",
894
+ "<SPECIAL_891>",
895
+ "<SPECIAL_892>",
896
+ "<SPECIAL_893>",
897
+ "<SPECIAL_894>",
898
+ "<SPECIAL_895>",
899
+ "<SPECIAL_896>",
900
+ "<SPECIAL_897>",
901
+ "<SPECIAL_898>",
902
+ "<SPECIAL_899>",
903
+ "<SPECIAL_900>",
904
+ "<SPECIAL_901>",
905
+ "<SPECIAL_902>",
906
+ "<SPECIAL_903>",
907
+ "<SPECIAL_904>",
908
+ "<SPECIAL_905>",
909
+ "<SPECIAL_906>",
910
+ "<SPECIAL_907>",
911
+ "<SPECIAL_908>",
912
+ "<SPECIAL_909>",
913
+ "<SPECIAL_910>",
914
+ "<SPECIAL_911>",
915
+ "<SPECIAL_912>",
916
+ "<SPECIAL_913>",
917
+ "<SPECIAL_914>",
918
+ "<SPECIAL_915>",
919
+ "<SPECIAL_916>",
920
+ "<SPECIAL_917>",
921
+ "<SPECIAL_918>",
922
+ "<SPECIAL_919>",
923
+ "<SPECIAL_920>",
924
+ "<SPECIAL_921>",
925
+ "<SPECIAL_922>",
926
+ "<SPECIAL_923>",
927
+ "<SPECIAL_924>",
928
+ "<SPECIAL_925>",
929
+ "<SPECIAL_926>",
930
+ "<SPECIAL_927>",
931
+ "<SPECIAL_928>",
932
+ "<SPECIAL_929>",
933
+ "<SPECIAL_930>",
934
+ "<SPECIAL_931>",
935
+ "<SPECIAL_932>",
936
+ "<SPECIAL_933>",
937
+ "<SPECIAL_934>",
938
+ "<SPECIAL_935>",
939
+ "<SPECIAL_936>",
940
+ "<SPECIAL_937>",
941
+ "<SPECIAL_938>",
942
+ "<SPECIAL_939>",
943
+ "<SPECIAL_940>",
944
+ "<SPECIAL_941>",
945
+ "<SPECIAL_942>",
946
+ "<SPECIAL_943>",
947
+ "<SPECIAL_944>",
948
+ "<SPECIAL_945>",
949
+ "<SPECIAL_946>",
950
+ "<SPECIAL_947>",
951
+ "<SPECIAL_948>",
952
+ "<SPECIAL_949>",
953
+ "<SPECIAL_950>",
954
+ "<SPECIAL_951>",
955
+ "<SPECIAL_952>",
956
+ "<SPECIAL_953>",
957
+ "<SPECIAL_954>",
958
+ "<SPECIAL_955>",
959
+ "<SPECIAL_956>",
960
+ "<SPECIAL_957>",
961
+ "<SPECIAL_958>",
962
+ "<SPECIAL_959>",
963
+ "<SPECIAL_960>",
964
+ "<SPECIAL_961>",
965
+ "<SPECIAL_962>",
966
+ "<SPECIAL_963>",
967
+ "<SPECIAL_964>",
968
+ "<SPECIAL_965>",
969
+ "<SPECIAL_966>",
970
+ "<SPECIAL_967>",
971
+ "<SPECIAL_968>",
972
+ "<SPECIAL_969>",
973
+ "<SPECIAL_970>",
974
+ "<SPECIAL_971>",
975
+ "<SPECIAL_972>",
976
+ "<SPECIAL_973>",
977
+ "<SPECIAL_974>",
978
+ "<SPECIAL_975>",
979
+ "<SPECIAL_976>",
980
+ "<SPECIAL_977>",
981
+ "<SPECIAL_978>",
982
+ "<SPECIAL_979>",
983
+ "<SPECIAL_980>",
984
+ "<SPECIAL_981>",
985
+ "<SPECIAL_982>",
986
+ "<SPECIAL_983>",
987
+ "<SPECIAL_984>",
988
+ "<SPECIAL_985>",
989
+ "<SPECIAL_986>",
990
+ "<SPECIAL_987>",
991
+ "<SPECIAL_988>",
992
+ "<SPECIAL_989>",
993
+ "<SPECIAL_990>",
994
+ "<SPECIAL_991>",
995
+ "<SPECIAL_992>",
996
+ "<SPECIAL_993>",
997
+ "<SPECIAL_994>",
998
+ "<SPECIAL_995>",
999
+ "<SPECIAL_996>",
1000
+ "<SPECIAL_997>",
1001
+ "<SPECIAL_998>",
1002
+ "<SPECIAL_999>"
1003
+ ],
1004
+ "bos_token": {
1005
+ "content": "<s>",
1006
+ "lstrip": false,
1007
+ "normalized": false,
1008
+ "rstrip": false,
1009
+ "single_word": false
1010
+ },
1011
+ "eos_token": {
1012
+ "content": "</s>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false
1017
+ },
1018
+ "pad_token": "</s>",
1019
+ "unk_token": {
1020
+ "content": "<unk>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false
1025
+ }
1026
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b76085f9923309d873994d444989f7eb6ec074b06f25b58f1e8d7b7741070949
3
+ size 17078037
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
trainer_state.json ADDED
@@ -0,0 +1,3841 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 544,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.001838235294117647,
13
+ "grad_norm": 0.0,
14
+ "learning_rate": 2.0000000000000002e-07,
15
+ "loss": 1.9627,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.003676470588235294,
20
+ "grad_norm": 0.0,
21
+ "learning_rate": 4.0000000000000003e-07,
22
+ "loss": 1.6036,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0055147058823529415,
27
+ "grad_norm": 0.0,
28
+ "learning_rate": 6.000000000000001e-07,
29
+ "loss": 1.7332,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.007352941176470588,
34
+ "grad_norm": 0.0,
35
+ "learning_rate": 8.000000000000001e-07,
36
+ "loss": 1.8943,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.009191176470588236,
41
+ "grad_norm": 0.0,
42
+ "learning_rate": 1.0000000000000002e-06,
43
+ "loss": 1.9555,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.011029411764705883,
48
+ "grad_norm": 0.0,
49
+ "learning_rate": 1.2000000000000002e-06,
50
+ "loss": 1.972,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.012867647058823529,
55
+ "grad_norm": 0.0,
56
+ "learning_rate": 1.4000000000000001e-06,
57
+ "loss": 1.7141,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.014705882352941176,
62
+ "grad_norm": 0.0,
63
+ "learning_rate": 1.6000000000000001e-06,
64
+ "loss": 1.8038,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.016544117647058824,
69
+ "grad_norm": 0.0,
70
+ "learning_rate": 1.8000000000000001e-06,
71
+ "loss": 1.9202,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.01838235294117647,
76
+ "grad_norm": 0.0,
77
+ "learning_rate": 2.0000000000000003e-06,
78
+ "loss": 1.6748,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.02022058823529412,
83
+ "grad_norm": 0.0,
84
+ "learning_rate": 2.2e-06,
85
+ "loss": 1.8197,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.022058823529411766,
90
+ "grad_norm": 0.0,
91
+ "learning_rate": 2.4000000000000003e-06,
92
+ "loss": 1.7396,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.02389705882352941,
97
+ "grad_norm": 0.0,
98
+ "learning_rate": 2.6e-06,
99
+ "loss": 1.654,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.025735294117647058,
104
+ "grad_norm": 0.0,
105
+ "learning_rate": 2.8000000000000003e-06,
106
+ "loss": 1.7685,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.027573529411764705,
111
+ "grad_norm": 0.0,
112
+ "learning_rate": 3e-06,
113
+ "loss": 1.5536,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.029411764705882353,
118
+ "grad_norm": 0.0,
119
+ "learning_rate": 3.2000000000000003e-06,
120
+ "loss": 1.7035,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.03125,
125
+ "grad_norm": 0.0,
126
+ "learning_rate": 3.4000000000000005e-06,
127
+ "loss": 1.9268,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.03308823529411765,
132
+ "grad_norm": 0.0,
133
+ "learning_rate": 3.6000000000000003e-06,
134
+ "loss": 2.0697,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.034926470588235295,
139
+ "grad_norm": 0.0,
140
+ "learning_rate": 3.8000000000000005e-06,
141
+ "loss": 1.9225,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.03676470588235294,
146
+ "grad_norm": 0.0,
147
+ "learning_rate": 4.000000000000001e-06,
148
+ "loss": 1.8257,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.03860294117647059,
153
+ "grad_norm": 0.0,
154
+ "learning_rate": 4.2000000000000004e-06,
155
+ "loss": 1.8509,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.04044117647058824,
160
+ "grad_norm": 0.0,
161
+ "learning_rate": 4.4e-06,
162
+ "loss": 1.8072,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.042279411764705885,
167
+ "grad_norm": 0.0,
168
+ "learning_rate": 4.600000000000001e-06,
169
+ "loss": 1.7604,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.04411764705882353,
174
+ "grad_norm": 0.0,
175
+ "learning_rate": 4.800000000000001e-06,
176
+ "loss": 1.7735,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.04595588235294118,
181
+ "grad_norm": 0.0,
182
+ "learning_rate": 5e-06,
183
+ "loss": 1.8244,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.04779411764705882,
188
+ "grad_norm": 0.0,
189
+ "learning_rate": 4.999989082004443e-06,
190
+ "loss": 1.9756,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.04963235294117647,
195
+ "grad_norm": 0.0,
196
+ "learning_rate": 4.999956328113134e-06,
197
+ "loss": 1.6347,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.051470588235294115,
202
+ "grad_norm": 0.0,
203
+ "learning_rate": 4.999901738612159e-06,
204
+ "loss": 1.817,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.05330882352941176,
209
+ "grad_norm": 0.0,
210
+ "learning_rate": 4.999825313978322e-06,
211
+ "loss": 1.6143,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.05514705882352941,
216
+ "grad_norm": 0.0,
217
+ "learning_rate": 4.999727054879149e-06,
218
+ "loss": 1.7087,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.05698529411764706,
223
+ "grad_norm": 0.0,
224
+ "learning_rate": 4.999606962172872e-06,
225
+ "loss": 1.9148,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.058823529411764705,
230
+ "grad_norm": 0.0,
231
+ "learning_rate": 4.999465036908429e-06,
232
+ "loss": 1.7264,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.06066176470588235,
237
+ "grad_norm": 0.0,
238
+ "learning_rate": 4.999301280325452e-06,
239
+ "loss": 1.5771,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.0625,
244
+ "grad_norm": 0.0,
245
+ "learning_rate": 4.999115693854255e-06,
246
+ "loss": 1.5012,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.06433823529411764,
251
+ "grad_norm": 0.0,
252
+ "learning_rate": 4.998908279115825e-06,
253
+ "loss": 1.8459,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.0661764705882353,
258
+ "grad_norm": 0.0,
259
+ "learning_rate": 4.998679037921803e-06,
260
+ "loss": 1.7001,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.06801470588235294,
265
+ "grad_norm": 0.0,
266
+ "learning_rate": 4.998427972274473e-06,
267
+ "loss": 1.719,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.06985294117647059,
272
+ "grad_norm": 0.0,
273
+ "learning_rate": 4.998155084366744e-06,
274
+ "loss": 1.9945,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.07169117647058823,
279
+ "grad_norm": 0.0,
280
+ "learning_rate": 4.997860376582123e-06,
281
+ "loss": 1.8024,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.07352941176470588,
286
+ "grad_norm": 0.0,
287
+ "learning_rate": 4.997543851494709e-06,
288
+ "loss": 1.7099,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.07536764705882353,
293
+ "grad_norm": 0.0,
294
+ "learning_rate": 4.9972055118691545e-06,
295
+ "loss": 1.5121,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.07720588235294118,
300
+ "grad_norm": 0.0,
301
+ "learning_rate": 4.996845360660652e-06,
302
+ "loss": 1.7949,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.07904411764705882,
307
+ "grad_norm": 0.0,
308
+ "learning_rate": 4.996463401014908e-06,
309
+ "loss": 1.6773,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.08088235294117647,
314
+ "grad_norm": 0.0,
315
+ "learning_rate": 4.9960596362681054e-06,
316
+ "loss": 1.7022,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.08272058823529412,
321
+ "grad_norm": 0.0,
322
+ "learning_rate": 4.9956340699468896e-06,
323
+ "loss": 1.7003,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.08455882352941177,
328
+ "grad_norm": 0.0,
329
+ "learning_rate": 4.995186705768322e-06,
330
+ "loss": 1.5486,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.08639705882352941,
335
+ "grad_norm": 0.0,
336
+ "learning_rate": 4.9947175476398606e-06,
337
+ "loss": 1.7186,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.08823529411764706,
342
+ "grad_norm": 0.0,
343
+ "learning_rate": 4.994226599659319e-06,
344
+ "loss": 1.6925,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.0900735294117647,
349
+ "grad_norm": 0.0,
350
+ "learning_rate": 4.993713866114829e-06,
351
+ "loss": 1.9749,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.09191176470588236,
356
+ "grad_norm": 0.0,
357
+ "learning_rate": 4.993179351484811e-06,
358
+ "loss": 2.0403,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.09375,
363
+ "grad_norm": 0.0,
364
+ "learning_rate": 4.9926230604379275e-06,
365
+ "loss": 1.8667,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.09558823529411764,
370
+ "grad_norm": 0.0,
371
+ "learning_rate": 4.992044997833044e-06,
372
+ "loss": 1.8817,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.0974264705882353,
377
+ "grad_norm": 0.0,
378
+ "learning_rate": 4.991445168719189e-06,
379
+ "loss": 1.909,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.09926470588235294,
384
+ "grad_norm": 0.0,
385
+ "learning_rate": 4.9908235783355075e-06,
386
+ "loss": 1.6816,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.10110294117647059,
391
+ "grad_norm": 0.0,
392
+ "learning_rate": 4.990180232111217e-06,
393
+ "loss": 1.627,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.10294117647058823,
398
+ "grad_norm": 0.0,
399
+ "learning_rate": 4.989515135665558e-06,
400
+ "loss": 1.7085,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.10477941176470588,
405
+ "grad_norm": 0.0,
406
+ "learning_rate": 4.988828294807746e-06,
407
+ "loss": 1.884,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.10661764705882353,
412
+ "grad_norm": 0.0,
413
+ "learning_rate": 4.988119715536922e-06,
414
+ "loss": 1.7246,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.10845588235294118,
419
+ "grad_norm": 0.0,
420
+ "learning_rate": 4.987389404042098e-06,
421
+ "loss": 1.7751,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.11029411764705882,
426
+ "grad_norm": 0.0,
427
+ "learning_rate": 4.986637366702105e-06,
428
+ "loss": 1.7463,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.11213235294117647,
433
+ "grad_norm": 0.0,
434
+ "learning_rate": 4.985863610085534e-06,
435
+ "loss": 1.695,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.11397058823529412,
440
+ "grad_norm": 0.0,
441
+ "learning_rate": 4.985068140950683e-06,
442
+ "loss": 1.8484,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.11580882352941177,
447
+ "grad_norm": 0.0,
448
+ "learning_rate": 4.984250966245495e-06,
449
+ "loss": 1.9041,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.11764705882352941,
454
+ "grad_norm": 0.0,
455
+ "learning_rate": 4.983412093107496e-06,
456
+ "loss": 1.9226,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.11948529411764706,
461
+ "grad_norm": 0.0,
462
+ "learning_rate": 4.982551528863738e-06,
463
+ "loss": 1.8654,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.1213235294117647,
468
+ "grad_norm": 0.0,
469
+ "learning_rate": 4.981669281030731e-06,
470
+ "loss": 1.7118,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.12316176470588236,
475
+ "grad_norm": 0.0,
476
+ "learning_rate": 4.980765357314376e-06,
477
+ "loss": 1.7896,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.125,
482
+ "grad_norm": 0.0,
483
+ "learning_rate": 4.9798397656099005e-06,
484
+ "loss": 1.5778,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.12683823529411764,
489
+ "grad_norm": 0.0,
490
+ "learning_rate": 4.978892514001792e-06,
491
+ "loss": 1.9112,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.12867647058823528,
496
+ "grad_norm": 0.0,
497
+ "learning_rate": 4.977923610763719e-06,
498
+ "loss": 1.8526,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.13051470588235295,
503
+ "grad_norm": 0.0,
504
+ "learning_rate": 4.976933064358467e-06,
505
+ "loss": 1.6893,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.1323529411764706,
510
+ "grad_norm": 0.0,
511
+ "learning_rate": 4.975920883437862e-06,
512
+ "loss": 1.8083,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.13419117647058823,
517
+ "grad_norm": 0.0,
518
+ "learning_rate": 4.974887076842694e-06,
519
+ "loss": 1.9307,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.13602941176470587,
524
+ "grad_norm": 0.0,
525
+ "learning_rate": 4.973831653602637e-06,
526
+ "loss": 1.828,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.13786764705882354,
531
+ "grad_norm": 0.0,
532
+ "learning_rate": 4.972754622936178e-06,
533
+ "loss": 1.7038,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.13970588235294118,
538
+ "grad_norm": 0.0,
539
+ "learning_rate": 4.971655994250529e-06,
540
+ "loss": 1.6064,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.14154411764705882,
545
+ "grad_norm": 0.0,
546
+ "learning_rate": 4.97053577714155e-06,
547
+ "loss": 1.7252,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.14338235294117646,
552
+ "grad_norm": 0.0,
553
+ "learning_rate": 4.96939398139366e-06,
554
+ "loss": 1.979,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.14522058823529413,
559
+ "grad_norm": 0.0,
560
+ "learning_rate": 4.968230616979755e-06,
561
+ "loss": 1.9525,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.14705882352941177,
566
+ "grad_norm": 0.0,
567
+ "learning_rate": 4.967045694061122e-06,
568
+ "loss": 1.912,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.1488970588235294,
573
+ "grad_norm": 0.0,
574
+ "learning_rate": 4.965839222987348e-06,
575
+ "loss": 1.6298,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.15073529411764705,
580
+ "grad_norm": 0.0,
581
+ "learning_rate": 4.9646112142962295e-06,
582
+ "loss": 1.6537,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.15257352941176472,
587
+ "grad_norm": 0.0,
588
+ "learning_rate": 4.96336167871368e-06,
589
+ "loss": 1.9089,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.15441176470588236,
594
+ "grad_norm": 0.0,
595
+ "learning_rate": 4.96209062715364e-06,
596
+ "loss": 1.8703,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.15625,
601
+ "grad_norm": 0.0,
602
+ "learning_rate": 4.960798070717977e-06,
603
+ "loss": 1.9559,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.15808823529411764,
608
+ "grad_norm": 0.0,
609
+ "learning_rate": 4.959484020696392e-06,
610
+ "loss": 1.8444,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.15992647058823528,
615
+ "grad_norm": 0.0,
616
+ "learning_rate": 4.9581484885663175e-06,
617
+ "loss": 1.6396,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.16176470588235295,
622
+ "grad_norm": 0.0,
623
+ "learning_rate": 4.956791485992823e-06,
624
+ "loss": 1.9488,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.1636029411764706,
629
+ "grad_norm": 0.0,
630
+ "learning_rate": 4.955413024828504e-06,
631
+ "loss": 1.8038,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.16544117647058823,
636
+ "grad_norm": 0.0,
637
+ "learning_rate": 4.9540131171133884e-06,
638
+ "loss": 1.7477,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.16727941176470587,
643
+ "grad_norm": 0.0,
644
+ "learning_rate": 4.952591775074825e-06,
645
+ "loss": 1.7757,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.16911764705882354,
650
+ "grad_norm": 0.0,
651
+ "learning_rate": 4.951149011127379e-06,
652
+ "loss": 1.7452,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.17095588235294118,
657
+ "grad_norm": 0.0,
658
+ "learning_rate": 4.949684837872723e-06,
659
+ "loss": 1.6137,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.17279411764705882,
664
+ "grad_norm": 0.0,
665
+ "learning_rate": 4.948199268099525e-06,
666
+ "loss": 1.8074,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.17463235294117646,
671
+ "grad_norm": 0.0,
672
+ "learning_rate": 4.946692314783342e-06,
673
+ "loss": 1.7006,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.17647058823529413,
678
+ "grad_norm": 0.0,
679
+ "learning_rate": 4.9451639910865016e-06,
680
+ "loss": 1.6746,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.17830882352941177,
685
+ "grad_norm": 0.0,
686
+ "learning_rate": 4.943614310357987e-06,
687
+ "loss": 1.5338,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.1801470588235294,
692
+ "grad_norm": 0.0,
693
+ "learning_rate": 4.942043286133326e-06,
694
+ "loss": 1.639,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.18198529411764705,
699
+ "grad_norm": 0.0,
700
+ "learning_rate": 4.940450932134467e-06,
701
+ "loss": 1.8445,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.18382352941176472,
706
+ "grad_norm": 0.0,
707
+ "learning_rate": 4.9388372622696605e-06,
708
+ "loss": 1.6577,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.18566176470588236,
713
+ "grad_norm": 0.0,
714
+ "learning_rate": 4.937202290633337e-06,
715
+ "loss": 1.9322,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.1875,
720
+ "grad_norm": 0.0,
721
+ "learning_rate": 4.935546031505991e-06,
722
+ "loss": 1.8592,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.18933823529411764,
727
+ "grad_norm": 0.0,
728
+ "learning_rate": 4.933868499354043e-06,
729
+ "loss": 1.8238,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.19117647058823528,
734
+ "grad_norm": 0.0,
735
+ "learning_rate": 4.932169708829725e-06,
736
+ "loss": 1.8892,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.19301470588235295,
741
+ "grad_norm": 0.0,
742
+ "learning_rate": 4.930449674770947e-06,
743
+ "loss": 1.6668,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.1948529411764706,
748
+ "grad_norm": 0.0,
749
+ "learning_rate": 4.928708412201169e-06,
750
+ "loss": 2.0112,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.19669117647058823,
755
+ "grad_norm": 0.0,
756
+ "learning_rate": 4.926945936329266e-06,
757
+ "loss": 1.8705,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.19852941176470587,
762
+ "grad_norm": 0.0,
763
+ "learning_rate": 4.925162262549405e-06,
764
+ "loss": 1.8025,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.20036764705882354,
769
+ "grad_norm": 0.0,
770
+ "learning_rate": 4.923357406440896e-06,
771
+ "loss": 1.9824,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.20220588235294118,
776
+ "grad_norm": 0.0,
777
+ "learning_rate": 4.921531383768071e-06,
778
+ "loss": 1.6375,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.20404411764705882,
783
+ "grad_norm": 0.0,
784
+ "learning_rate": 4.919684210480134e-06,
785
+ "loss": 1.9491,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.20588235294117646,
790
+ "grad_norm": 0.0,
791
+ "learning_rate": 4.917815902711029e-06,
792
+ "loss": 2.0238,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.20772058823529413,
797
+ "grad_norm": 0.0,
798
+ "learning_rate": 4.915926476779297e-06,
799
+ "loss": 1.8125,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.20955882352941177,
804
+ "grad_norm": 0.0,
805
+ "learning_rate": 4.914015949187934e-06,
806
+ "loss": 1.7428,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.2113970588235294,
811
+ "grad_norm": 0.0,
812
+ "learning_rate": 4.912084336624243e-06,
813
+ "loss": 1.6849,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.21323529411764705,
818
+ "grad_norm": 0.0,
819
+ "learning_rate": 4.910131655959697e-06,
820
+ "loss": 1.8793,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.21507352941176472,
825
+ "grad_norm": 0.0,
826
+ "learning_rate": 4.908157924249781e-06,
827
+ "loss": 1.9526,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.21691176470588236,
832
+ "grad_norm": 0.0,
833
+ "learning_rate": 4.906163158733851e-06,
834
+ "loss": 1.7916,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.21875,
839
+ "grad_norm": 0.0,
840
+ "learning_rate": 4.904147376834979e-06,
841
+ "loss": 1.8987,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.22058823529411764,
846
+ "grad_norm": 0.0,
847
+ "learning_rate": 4.9021105961598046e-06,
848
+ "loss": 1.877,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.22242647058823528,
853
+ "grad_norm": 0.0,
854
+ "learning_rate": 4.900052834498377e-06,
855
+ "loss": 1.7896,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.22426470588235295,
860
+ "grad_norm": 0.0,
861
+ "learning_rate": 4.897974109824002e-06,
862
+ "loss": 1.8914,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.2261029411764706,
867
+ "grad_norm": 0.0,
868
+ "learning_rate": 4.895874440293085e-06,
869
+ "loss": 1.7302,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.22794117647058823,
874
+ "grad_norm": 0.0,
875
+ "learning_rate": 4.8937538442449724e-06,
876
+ "loss": 1.807,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.22977941176470587,
881
+ "grad_norm": 0.0,
882
+ "learning_rate": 4.891612340201791e-06,
883
+ "loss": 1.6097,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.23161764705882354,
888
+ "grad_norm": 0.0,
889
+ "learning_rate": 4.8894499468682865e-06,
890
+ "loss": 1.9383,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.23345588235294118,
895
+ "grad_norm": 0.0,
896
+ "learning_rate": 4.887266683131659e-06,
897
+ "loss": 1.6959,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.23529411764705882,
902
+ "grad_norm": 0.0,
903
+ "learning_rate": 4.885062568061399e-06,
904
+ "loss": 1.9403,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.23713235294117646,
909
+ "grad_norm": 0.0,
910
+ "learning_rate": 4.882837620909121e-06,
911
+ "loss": 1.6888,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.23897058823529413,
916
+ "grad_norm": 0.0,
917
+ "learning_rate": 4.880591861108397e-06,
918
+ "loss": 1.7798,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.24080882352941177,
923
+ "grad_norm": 0.0,
924
+ "learning_rate": 4.878325308274583e-06,
925
+ "loss": 1.796,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.2426470588235294,
930
+ "grad_norm": 0.0,
931
+ "learning_rate": 4.876037982204649e-06,
932
+ "loss": 1.6234,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.24448529411764705,
937
+ "grad_norm": 0.0,
938
+ "learning_rate": 4.873729902877009e-06,
939
+ "loss": 1.8065,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.24632352941176472,
944
+ "grad_norm": 0.0,
945
+ "learning_rate": 4.871401090451342e-06,
946
+ "loss": 1.9266,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.24816176470588236,
951
+ "grad_norm": 0.0,
952
+ "learning_rate": 4.869051565268419e-06,
953
+ "loss": 1.772,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.25,
958
+ "grad_norm": 0.0,
959
+ "learning_rate": 4.866681347849925e-06,
960
+ "loss": 1.5869,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.25183823529411764,
965
+ "grad_norm": 0.0,
966
+ "learning_rate": 4.8642904588982785e-06,
967
+ "loss": 1.9012,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.2536764705882353,
972
+ "grad_norm": 0.0,
973
+ "learning_rate": 4.861878919296451e-06,
974
+ "loss": 1.9242,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.2555147058823529,
979
+ "grad_norm": 0.0,
980
+ "learning_rate": 4.859446750107786e-06,
981
+ "loss": 2.0885,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.25735294117647056,
986
+ "grad_norm": 0.0,
987
+ "learning_rate": 4.856993972575813e-06,
988
+ "loss": 1.5305,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.25919117647058826,
993
+ "grad_norm": 0.0,
994
+ "learning_rate": 4.854520608124063e-06,
995
+ "loss": 1.8923,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.2610294117647059,
1000
+ "grad_norm": 0.0,
1001
+ "learning_rate": 4.8520266783558825e-06,
1002
+ "loss": 1.8581,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.26286764705882354,
1007
+ "grad_norm": 0.0,
1008
+ "learning_rate": 4.849512205054242e-06,
1009
+ "loss": 1.6467,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.2647058823529412,
1014
+ "grad_norm": 0.0,
1015
+ "learning_rate": 4.846977210181549e-06,
1016
+ "loss": 1.8146,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.2665441176470588,
1021
+ "grad_norm": 0.0,
1022
+ "learning_rate": 4.844421715879453e-06,
1023
+ "loss": 1.555,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.26838235294117646,
1028
+ "grad_norm": 0.0,
1029
+ "learning_rate": 4.841845744468655e-06,
1030
+ "loss": 1.7029,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.2702205882352941,
1035
+ "grad_norm": 0.0,
1036
+ "learning_rate": 4.83924931844871e-06,
1037
+ "loss": 1.7241,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.27205882352941174,
1042
+ "grad_norm": 0.0,
1043
+ "learning_rate": 4.836632460497832e-06,
1044
+ "loss": 1.667,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.27389705882352944,
1049
+ "grad_norm": 0.0,
1050
+ "learning_rate": 4.833995193472697e-06,
1051
+ "loss": 1.5294,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.2757352941176471,
1056
+ "grad_norm": 0.0,
1057
+ "learning_rate": 4.831337540408239e-06,
1058
+ "loss": 1.7341,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.2775735294117647,
1063
+ "grad_norm": 0.0,
1064
+ "learning_rate": 4.828659524517455e-06,
1065
+ "loss": 1.7731,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.27941176470588236,
1070
+ "grad_norm": 0.0,
1071
+ "learning_rate": 4.825961169191196e-06,
1072
+ "loss": 1.891,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.28125,
1077
+ "grad_norm": 0.0,
1078
+ "learning_rate": 4.8232424979979684e-06,
1079
+ "loss": 1.5459,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.28308823529411764,
1084
+ "grad_norm": 0.0,
1085
+ "learning_rate": 4.820503534683725e-06,
1086
+ "loss": 1.7663,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.2849264705882353,
1091
+ "grad_norm": 0.0,
1092
+ "learning_rate": 4.8177443031716545e-06,
1093
+ "loss": 1.9843,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.2867647058823529,
1098
+ "grad_norm": 0.0,
1099
+ "learning_rate": 4.814964827561981e-06,
1100
+ "loss": 1.9345,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.28860294117647056,
1105
+ "grad_norm": 0.0,
1106
+ "learning_rate": 4.812165132131746e-06,
1107
+ "loss": 1.651,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.29044117647058826,
1112
+ "grad_norm": 0.0,
1113
+ "learning_rate": 4.809345241334598e-06,
1114
+ "loss": 1.7562,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.2922794117647059,
1119
+ "grad_norm": 0.0,
1120
+ "learning_rate": 4.806505179800583e-06,
1121
+ "loss": 1.7144,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.29411764705882354,
1126
+ "grad_norm": 0.0,
1127
+ "learning_rate": 4.803644972335925e-06,
1128
+ "loss": 1.8868,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.2959558823529412,
1133
+ "grad_norm": 0.0,
1134
+ "learning_rate": 4.800764643922806e-06,
1135
+ "loss": 1.7201,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.2977941176470588,
1140
+ "grad_norm": 0.0,
1141
+ "learning_rate": 4.797864219719161e-06,
1142
+ "loss": 2.0389,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.29963235294117646,
1147
+ "grad_norm": 0.0,
1148
+ "learning_rate": 4.794943725058441e-06,
1149
+ "loss": 1.7262,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.3014705882352941,
1154
+ "grad_norm": 0.0,
1155
+ "learning_rate": 4.792003185449406e-06,
1156
+ "loss": 1.8069,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.30330882352941174,
1161
+ "grad_norm": 0.0,
1162
+ "learning_rate": 4.789042626575895e-06,
1163
+ "loss": 1.8573,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.30514705882352944,
1168
+ "grad_norm": 0.0,
1169
+ "learning_rate": 4.786062074296602e-06,
1170
+ "loss": 1.7839,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.3069852941176471,
1175
+ "grad_norm": 0.0,
1176
+ "learning_rate": 4.783061554644853e-06,
1177
+ "loss": 1.8461,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.3088235294117647,
1182
+ "grad_norm": 0.0,
1183
+ "learning_rate": 4.780041093828376e-06,
1184
+ "loss": 1.7538,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.31066176470588236,
1189
+ "grad_norm": 0.0,
1190
+ "learning_rate": 4.777000718229072e-06,
1191
+ "loss": 1.6497,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.3125,
1196
+ "grad_norm": 0.0,
1197
+ "learning_rate": 4.773940454402789e-06,
1198
+ "loss": 1.6723,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.31433823529411764,
1203
+ "grad_norm": 0.0,
1204
+ "learning_rate": 4.770860329079083e-06,
1205
+ "loss": 1.8927,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.3161764705882353,
1210
+ "grad_norm": 0.0,
1211
+ "learning_rate": 4.7677603691609905e-06,
1212
+ "loss": 1.7236,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.3180147058823529,
1217
+ "grad_norm": 0.0,
1218
+ "learning_rate": 4.7646406017247895e-06,
1219
+ "loss": 1.971,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.31985294117647056,
1224
+ "grad_norm": 0.0,
1225
+ "learning_rate": 4.761501054019766e-06,
1226
+ "loss": 1.8082,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.32169117647058826,
1231
+ "grad_norm": 0.0,
1232
+ "learning_rate": 4.758341753467975e-06,
1233
+ "loss": 1.9078,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.3235294117647059,
1238
+ "grad_norm": 0.0,
1239
+ "learning_rate": 4.755162727663998e-06,
1240
+ "loss": 1.6387,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.32536764705882354,
1245
+ "grad_norm": 0.0,
1246
+ "learning_rate": 4.751964004374709e-06,
1247
+ "loss": 2.0215,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.3272058823529412,
1252
+ "grad_norm": 0.0,
1253
+ "learning_rate": 4.748745611539024e-06,
1254
+ "loss": 1.8042,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.3290441176470588,
1259
+ "grad_norm": 0.0,
1260
+ "learning_rate": 4.745507577267663e-06,
1261
+ "loss": 2.1742,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.33088235294117646,
1266
+ "grad_norm": 0.0,
1267
+ "learning_rate": 4.7422499298429e-06,
1268
+ "loss": 1.8744,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.3327205882352941,
1273
+ "grad_norm": 0.0,
1274
+ "learning_rate": 4.738972697718319e-06,
1275
+ "loss": 1.7443,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.33455882352941174,
1280
+ "grad_norm": 0.0,
1281
+ "learning_rate": 4.735675909518565e-06,
1282
+ "loss": 1.9355,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.33639705882352944,
1287
+ "grad_norm": 0.0,
1288
+ "learning_rate": 4.732359594039094e-06,
1289
+ "loss": 1.5572,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.3382352941176471,
1294
+ "grad_norm": 0.0,
1295
+ "learning_rate": 4.729023780245919e-06,
1296
+ "loss": 1.6816,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.3400735294117647,
1301
+ "grad_norm": 0.0,
1302
+ "learning_rate": 4.725668497275361e-06,
1303
+ "loss": 1.8776,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.34191176470588236,
1308
+ "grad_norm": 0.0,
1309
+ "learning_rate": 4.72229377443379e-06,
1310
+ "loss": 1.7296,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.34375,
1315
+ "grad_norm": 0.0,
1316
+ "learning_rate": 4.718899641197375e-06,
1317
+ "loss": 1.8298,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.34558823529411764,
1322
+ "grad_norm": 0.0,
1323
+ "learning_rate": 4.71548612721182e-06,
1324
+ "loss": 1.7406,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.3474264705882353,
1329
+ "grad_norm": 0.0,
1330
+ "learning_rate": 4.712053262292111e-06,
1331
+ "loss": 1.953,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.3492647058823529,
1336
+ "grad_norm": 0.0,
1337
+ "learning_rate": 4.70860107642225e-06,
1338
+ "loss": 1.8692,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.35110294117647056,
1343
+ "grad_norm": 0.0,
1344
+ "learning_rate": 4.7051295997549964e-06,
1345
+ "loss": 1.8754,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.35294117647058826,
1350
+ "grad_norm": 0.0,
1351
+ "learning_rate": 4.701638862611605e-06,
1352
+ "loss": 1.8684,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.3547794117647059,
1357
+ "grad_norm": 0.0,
1358
+ "learning_rate": 4.698128895481557e-06,
1359
+ "loss": 1.5358,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.35661764705882354,
1364
+ "grad_norm": 0.0,
1365
+ "learning_rate": 4.694599729022297e-06,
1366
+ "loss": 1.56,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.3584558823529412,
1371
+ "grad_norm": 0.0,
1372
+ "learning_rate": 4.691051394058965e-06,
1373
+ "loss": 1.7223,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.3602941176470588,
1378
+ "grad_norm": 0.0,
1379
+ "learning_rate": 4.687483921584124e-06,
1380
+ "loss": 1.6848,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.36213235294117646,
1385
+ "grad_norm": 0.0,
1386
+ "learning_rate": 4.683897342757493e-06,
1387
+ "loss": 1.654,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.3639705882352941,
1392
+ "grad_norm": 0.0,
1393
+ "learning_rate": 4.680291688905674e-06,
1394
+ "loss": 1.6973,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.36580882352941174,
1399
+ "grad_norm": 0.0,
1400
+ "learning_rate": 4.676666991521876e-06,
1401
+ "loss": 1.6474,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.36764705882352944,
1406
+ "grad_norm": 0.0,
1407
+ "learning_rate": 4.673023282265645e-06,
1408
+ "loss": 1.5936,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 0.3694852941176471,
1413
+ "grad_norm": 0.0,
1414
+ "learning_rate": 4.669360592962581e-06,
1415
+ "loss": 1.6647,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 0.3713235294117647,
1420
+ "grad_norm": 0.0,
1421
+ "learning_rate": 4.665678955604064e-06,
1422
+ "loss": 1.9738,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 0.37316176470588236,
1427
+ "grad_norm": 0.0,
1428
+ "learning_rate": 4.661978402346974e-06,
1429
+ "loss": 1.7933,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 0.375,
1434
+ "grad_norm": 0.0,
1435
+ "learning_rate": 4.658258965513412e-06,
1436
+ "loss": 1.9133,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 0.37683823529411764,
1441
+ "grad_norm": 0.0,
1442
+ "learning_rate": 4.654520677590412e-06,
1443
+ "loss": 1.8377,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 0.3786764705882353,
1448
+ "grad_norm": 0.0,
1449
+ "learning_rate": 4.650763571229664e-06,
1450
+ "loss": 1.79,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 0.3805147058823529,
1455
+ "grad_norm": 0.0,
1456
+ "learning_rate": 4.646987679247223e-06,
1457
+ "loss": 1.5877,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 0.38235294117647056,
1462
+ "grad_norm": 0.0,
1463
+ "learning_rate": 4.643193034623229e-06,
1464
+ "loss": 1.7125,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 0.38419117647058826,
1469
+ "grad_norm": 0.0,
1470
+ "learning_rate": 4.6393796705016105e-06,
1471
+ "loss": 1.7207,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 0.3860294117647059,
1476
+ "grad_norm": 0.0,
1477
+ "learning_rate": 4.635547620189802e-06,
1478
+ "loss": 1.6849,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 0.38786764705882354,
1483
+ "grad_norm": 0.0,
1484
+ "learning_rate": 4.631696917158449e-06,
1485
+ "loss": 1.716,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 0.3897058823529412,
1490
+ "grad_norm": 0.0,
1491
+ "learning_rate": 4.62782759504112e-06,
1492
+ "loss": 1.7206,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 0.3915441176470588,
1497
+ "grad_norm": 0.0,
1498
+ "learning_rate": 4.623939687634009e-06,
1499
+ "loss": 1.4938,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 0.39338235294117646,
1504
+ "grad_norm": 0.0,
1505
+ "learning_rate": 4.620033228895639e-06,
1506
+ "loss": 1.9391,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 0.3952205882352941,
1511
+ "grad_norm": 0.0,
1512
+ "learning_rate": 4.616108252946568e-06,
1513
+ "loss": 1.688,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 0.39705882352941174,
1518
+ "grad_norm": 0.0,
1519
+ "learning_rate": 4.612164794069096e-06,
1520
+ "loss": 1.9585,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 0.39889705882352944,
1525
+ "grad_norm": 0.0,
1526
+ "learning_rate": 4.608202886706953e-06,
1527
+ "loss": 1.6469,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 0.4007352941176471,
1532
+ "grad_norm": 0.0,
1533
+ "learning_rate": 4.6042225654650096e-06,
1534
+ "loss": 1.8181,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 0.4025735294117647,
1539
+ "grad_norm": 0.0,
1540
+ "learning_rate": 4.60022386510897e-06,
1541
+ "loss": 1.8259,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 0.40441176470588236,
1546
+ "grad_norm": 0.0,
1547
+ "learning_rate": 4.5962068205650674e-06,
1548
+ "loss": 1.8962,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 0.40625,
1553
+ "grad_norm": 0.0,
1554
+ "learning_rate": 4.592171466919762e-06,
1555
+ "loss": 1.868,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 0.40808823529411764,
1560
+ "grad_norm": 0.0,
1561
+ "learning_rate": 4.588117839419432e-06,
1562
+ "loss": 1.7946,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 0.4099264705882353,
1567
+ "grad_norm": 0.0,
1568
+ "learning_rate": 4.584045973470067e-06,
1569
+ "loss": 1.6068,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 0.4117647058823529,
1574
+ "grad_norm": 0.0,
1575
+ "learning_rate": 4.579955904636959e-06,
1576
+ "loss": 1.8194,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 0.41360294117647056,
1581
+ "grad_norm": 0.0,
1582
+ "learning_rate": 4.5758476686443905e-06,
1583
+ "loss": 1.8958,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 0.41544117647058826,
1588
+ "grad_norm": 0.0,
1589
+ "learning_rate": 4.571721301375323e-06,
1590
+ "loss": 1.5318,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 0.4172794117647059,
1595
+ "grad_norm": 0.0,
1596
+ "learning_rate": 4.5675768388710855e-06,
1597
+ "loss": 1.6046,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 0.41911764705882354,
1602
+ "grad_norm": 0.0,
1603
+ "learning_rate": 4.563414317331053e-06,
1604
+ "loss": 1.6724,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 0.4209558823529412,
1609
+ "grad_norm": 0.0,
1610
+ "learning_rate": 4.559233773112343e-06,
1611
+ "loss": 1.8096,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 0.4227941176470588,
1616
+ "grad_norm": 0.0,
1617
+ "learning_rate": 4.5550352427294836e-06,
1618
+ "loss": 1.4821,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 0.42463235294117646,
1623
+ "grad_norm": 0.0,
1624
+ "learning_rate": 4.550818762854105e-06,
1625
+ "loss": 1.6695,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 0.4264705882352941,
1630
+ "grad_norm": 0.0,
1631
+ "learning_rate": 4.546584370314613e-06,
1632
+ "loss": 1.6973,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 0.42830882352941174,
1637
+ "grad_norm": 0.0,
1638
+ "learning_rate": 4.542332102095871e-06,
1639
+ "loss": 1.8328,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 0.43014705882352944,
1644
+ "grad_norm": 0.0,
1645
+ "learning_rate": 4.538061995338875e-06,
1646
+ "loss": 1.6589,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 0.4319852941176471,
1651
+ "grad_norm": 0.0,
1652
+ "learning_rate": 4.533774087340431e-06,
1653
+ "loss": 1.7145,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 0.4338235294117647,
1658
+ "grad_norm": 0.0,
1659
+ "learning_rate": 4.529468415552829e-06,
1660
+ "loss": 1.4717,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 0.43566176470588236,
1665
+ "grad_norm": 0.0,
1666
+ "learning_rate": 4.52514501758351e-06,
1667
+ "loss": 1.7362,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 0.4375,
1672
+ "grad_norm": 0.0,
1673
+ "learning_rate": 4.520803931194747e-06,
1674
+ "loss": 1.8571,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 0.43933823529411764,
1679
+ "grad_norm": 0.0,
1680
+ "learning_rate": 4.5164451943033105e-06,
1681
+ "loss": 1.9605,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 0.4411764705882353,
1686
+ "grad_norm": 0.0,
1687
+ "learning_rate": 4.512068844980136e-06,
1688
+ "loss": 1.9368,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 0.4430147058823529,
1693
+ "grad_norm": 0.0,
1694
+ "learning_rate": 4.507674921449994e-06,
1695
+ "loss": 1.45,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 0.44485294117647056,
1700
+ "grad_norm": 0.0,
1701
+ "learning_rate": 4.503263462091153e-06,
1702
+ "loss": 1.6417,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 0.44669117647058826,
1707
+ "grad_norm": 0.0,
1708
+ "learning_rate": 4.49883450543505e-06,
1709
+ "loss": 1.7531,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 0.4485294117647059,
1714
+ "grad_norm": 0.0,
1715
+ "learning_rate": 4.494388090165947e-06,
1716
+ "loss": 1.826,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 0.45036764705882354,
1721
+ "grad_norm": 0.0,
1722
+ "learning_rate": 4.489924255120597e-06,
1723
+ "loss": 1.5047,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 0.4522058823529412,
1728
+ "grad_norm": 0.0,
1729
+ "learning_rate": 4.485443039287907e-06,
1730
+ "loss": 1.7405,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 0.4540441176470588,
1735
+ "grad_norm": 0.0,
1736
+ "learning_rate": 4.48094448180859e-06,
1737
+ "loss": 1.7201,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 0.45588235294117646,
1742
+ "grad_norm": 0.0,
1743
+ "learning_rate": 4.476428621974833e-06,
1744
+ "loss": 1.9913,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 0.4577205882352941,
1749
+ "grad_norm": 0.0,
1750
+ "learning_rate": 4.471895499229946e-06,
1751
+ "loss": 1.5852,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 0.45955882352941174,
1756
+ "grad_norm": 0.0,
1757
+ "learning_rate": 4.467345153168018e-06,
1758
+ "loss": 1.5358,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 0.46139705882352944,
1763
+ "grad_norm": 0.0,
1764
+ "learning_rate": 4.462777623533577e-06,
1765
+ "loss": 1.7271,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 0.4632352941176471,
1770
+ "grad_norm": 0.0,
1771
+ "learning_rate": 4.458192950221237e-06,
1772
+ "loss": 1.5025,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 0.4650735294117647,
1777
+ "grad_norm": 0.0,
1778
+ "learning_rate": 4.4535911732753535e-06,
1779
+ "loss": 1.9186,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 0.46691176470588236,
1784
+ "grad_norm": 0.0,
1785
+ "learning_rate": 4.448972332889669e-06,
1786
+ "loss": 1.8936,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 0.46875,
1791
+ "grad_norm": 0.0,
1792
+ "learning_rate": 4.444336469406968e-06,
1793
+ "loss": 1.699,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 0.47058823529411764,
1798
+ "grad_norm": 0.0,
1799
+ "learning_rate": 4.4396836233187195e-06,
1800
+ "loss": 1.9617,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 0.4724264705882353,
1805
+ "grad_norm": 0.0,
1806
+ "learning_rate": 4.435013835264725e-06,
1807
+ "loss": 1.9323,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 0.4742647058823529,
1812
+ "grad_norm": 0.0,
1813
+ "learning_rate": 4.4303271460327655e-06,
1814
+ "loss": 1.6515,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 0.47610294117647056,
1819
+ "grad_norm": 0.0,
1820
+ "learning_rate": 4.425623596558243e-06,
1821
+ "loss": 1.6436,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 0.47794117647058826,
1826
+ "grad_norm": 0.0,
1827
+ "learning_rate": 4.420903227923823e-06,
1828
+ "loss": 1.9221,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 0.4797794117647059,
1833
+ "grad_norm": 0.0,
1834
+ "learning_rate": 4.416166081359077e-06,
1835
+ "loss": 1.9025,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 0.48161764705882354,
1840
+ "grad_norm": 0.0,
1841
+ "learning_rate": 4.411412198240119e-06,
1842
+ "loss": 1.866,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 0.4834558823529412,
1847
+ "grad_norm": 0.0,
1848
+ "learning_rate": 4.406641620089252e-06,
1849
+ "loss": 1.6989,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 0.4852941176470588,
1854
+ "grad_norm": 0.0,
1855
+ "learning_rate": 4.401854388574595e-06,
1856
+ "loss": 1.7039,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 0.48713235294117646,
1861
+ "grad_norm": 0.0,
1862
+ "learning_rate": 4.397050545509726e-06,
1863
+ "loss": 1.9074,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 0.4889705882352941,
1868
+ "grad_norm": 0.0,
1869
+ "learning_rate": 4.392230132853316e-06,
1870
+ "loss": 1.5768,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 0.49080882352941174,
1875
+ "grad_norm": 0.0,
1876
+ "learning_rate": 4.387393192708758e-06,
1877
+ "loss": 1.6722,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 0.49264705882352944,
1882
+ "grad_norm": 0.0,
1883
+ "learning_rate": 4.382539767323805e-06,
1884
+ "loss": 1.8256,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 0.4944852941176471,
1889
+ "grad_norm": 0.0,
1890
+ "learning_rate": 4.377669899090202e-06,
1891
+ "loss": 1.6908,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 0.4963235294117647,
1896
+ "grad_norm": 0.0,
1897
+ "learning_rate": 4.372783630543305e-06,
1898
+ "loss": 1.6795,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 0.49816176470588236,
1903
+ "grad_norm": 0.0,
1904
+ "learning_rate": 4.3678810043617215e-06,
1905
+ "loss": 1.7813,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 0.5,
1910
+ "grad_norm": 0.0,
1911
+ "learning_rate": 4.362962063366933e-06,
1912
+ "loss": 1.6982,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 0.5018382352941176,
1917
+ "grad_norm": 0.0,
1918
+ "learning_rate": 4.358026850522919e-06,
1919
+ "loss": 2.0328,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 0.5036764705882353,
1924
+ "grad_norm": 0.0,
1925
+ "learning_rate": 4.353075408935787e-06,
1926
+ "loss": 1.7353,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 0.5055147058823529,
1931
+ "grad_norm": 0.0,
1932
+ "learning_rate": 4.348107781853389e-06,
1933
+ "loss": 1.7333,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 0.5073529411764706,
1938
+ "grad_norm": 0.0,
1939
+ "learning_rate": 4.34312401266495e-06,
1940
+ "loss": 1.914,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 0.5091911764705882,
1945
+ "grad_norm": 0.0,
1946
+ "learning_rate": 4.338124144900685e-06,
1947
+ "loss": 1.6887,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 0.5110294117647058,
1952
+ "grad_norm": 0.0,
1953
+ "learning_rate": 4.333108222231423e-06,
1954
+ "loss": 1.6988,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 0.5128676470588235,
1959
+ "grad_norm": 0.0,
1960
+ "learning_rate": 4.32807628846822e-06,
1961
+ "loss": 1.5326,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 0.5147058823529411,
1966
+ "grad_norm": 0.0,
1967
+ "learning_rate": 4.3230283875619815e-06,
1968
+ "loss": 1.9346,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 0.5165441176470589,
1973
+ "grad_norm": 0.0,
1974
+ "learning_rate": 4.317964563603073e-06,
1975
+ "loss": 1.6371,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 0.5183823529411765,
1980
+ "grad_norm": 0.0,
1981
+ "learning_rate": 4.312884860820942e-06,
1982
+ "loss": 2.1047,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 0.5202205882352942,
1987
+ "grad_norm": 0.0,
1988
+ "learning_rate": 4.307789323583727e-06,
1989
+ "loss": 1.5355,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 0.5220588235294118,
1994
+ "grad_norm": 0.0,
1995
+ "learning_rate": 4.302677996397868e-06,
1996
+ "loss": 1.5629,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 0.5238970588235294,
2001
+ "grad_norm": 0.0,
2002
+ "learning_rate": 4.297550923907726e-06,
2003
+ "loss": 1.9965,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 0.5257352941176471,
2008
+ "grad_norm": 0.0,
2009
+ "learning_rate": 4.2924081508951824e-06,
2010
+ "loss": 1.8088,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 0.5275735294117647,
2015
+ "grad_norm": 0.0,
2016
+ "learning_rate": 4.287249722279257e-06,
2017
+ "loss": 1.8258,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 0.5294117647058824,
2022
+ "grad_norm": 0.0,
2023
+ "learning_rate": 4.28207568311571e-06,
2024
+ "loss": 1.7162,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 0.53125,
2029
+ "grad_norm": 0.0,
2030
+ "learning_rate": 4.27688607859665e-06,
2031
+ "loss": 1.6649,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 0.5330882352941176,
2036
+ "grad_norm": 0.0,
2037
+ "learning_rate": 4.27168095405014e-06,
2038
+ "loss": 1.8048,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 0.5349264705882353,
2043
+ "grad_norm": 0.0,
2044
+ "learning_rate": 4.266460354939803e-06,
2045
+ "loss": 1.7108,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 0.5367647058823529,
2050
+ "grad_norm": 0.0,
2051
+ "learning_rate": 4.26122432686442e-06,
2052
+ "loss": 1.9229,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 0.5386029411764706,
2057
+ "grad_norm": 0.0,
2058
+ "learning_rate": 4.255972915557537e-06,
2059
+ "loss": 1.9534,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 0.5404411764705882,
2064
+ "grad_norm": 0.0,
2065
+ "learning_rate": 4.250706166887061e-06,
2066
+ "loss": 1.9423,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 0.5422794117647058,
2071
+ "grad_norm": 0.0,
2072
+ "learning_rate": 4.245424126854864e-06,
2073
+ "loss": 1.7946,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 0.5441176470588235,
2078
+ "grad_norm": 0.0,
2079
+ "learning_rate": 4.240126841596377e-06,
2080
+ "loss": 1.6288,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 0.5459558823529411,
2085
+ "grad_norm": 0.0,
2086
+ "learning_rate": 4.234814357380189e-06,
2087
+ "loss": 1.9226,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 0.5477941176470589,
2092
+ "grad_norm": 0.0,
2093
+ "learning_rate": 4.229486720607645e-06,
2094
+ "loss": 1.5787,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 0.5496323529411765,
2099
+ "grad_norm": 0.0,
2100
+ "learning_rate": 4.224143977812435e-06,
2101
+ "loss": 1.6782,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 0.5514705882352942,
2106
+ "grad_norm": 0.0,
2107
+ "learning_rate": 4.218786175660194e-06,
2108
+ "loss": 1.4888,
2109
+ "step": 300
2110
+ },
2111
+ {
2112
+ "epoch": 0.5533088235294118,
2113
+ "grad_norm": 0.0,
2114
+ "learning_rate": 4.213413360948089e-06,
2115
+ "loss": 1.7777,
2116
+ "step": 301
2117
+ },
2118
+ {
2119
+ "epoch": 0.5551470588235294,
2120
+ "grad_norm": 0.0,
2121
+ "learning_rate": 4.208025580604413e-06,
2122
+ "loss": 1.7884,
2123
+ "step": 302
2124
+ },
2125
+ {
2126
+ "epoch": 0.5569852941176471,
2127
+ "grad_norm": 0.0,
2128
+ "learning_rate": 4.202622881688178e-06,
2129
+ "loss": 1.6578,
2130
+ "step": 303
2131
+ },
2132
+ {
2133
+ "epoch": 0.5588235294117647,
2134
+ "grad_norm": 0.0,
2135
+ "learning_rate": 4.197205311388698e-06,
2136
+ "loss": 1.991,
2137
+ "step": 304
2138
+ },
2139
+ {
2140
+ "epoch": 0.5606617647058824,
2141
+ "grad_norm": 0.0,
2142
+ "learning_rate": 4.1917729170251765e-06,
2143
+ "loss": 1.7002,
2144
+ "step": 305
2145
+ },
2146
+ {
2147
+ "epoch": 0.5625,
2148
+ "grad_norm": 0.0,
2149
+ "learning_rate": 4.186325746046302e-06,
2150
+ "loss": 1.9256,
2151
+ "step": 306
2152
+ },
2153
+ {
2154
+ "epoch": 0.5643382352941176,
2155
+ "grad_norm": 0.0,
2156
+ "learning_rate": 4.180863846029825e-06,
2157
+ "loss": 1.8477,
2158
+ "step": 307
2159
+ },
2160
+ {
2161
+ "epoch": 0.5661764705882353,
2162
+ "grad_norm": 0.0,
2163
+ "learning_rate": 4.175387264682146e-06,
2164
+ "loss": 1.9161,
2165
+ "step": 308
2166
+ },
2167
+ {
2168
+ "epoch": 0.5680147058823529,
2169
+ "grad_norm": 0.0,
2170
+ "learning_rate": 4.169896049837899e-06,
2171
+ "loss": 1.6926,
2172
+ "step": 309
2173
+ },
2174
+ {
2175
+ "epoch": 0.5698529411764706,
2176
+ "grad_norm": 0.0,
2177
+ "learning_rate": 4.164390249459526e-06,
2178
+ "loss": 1.8339,
2179
+ "step": 310
2180
+ },
2181
+ {
2182
+ "epoch": 0.5716911764705882,
2183
+ "grad_norm": 0.0,
2184
+ "learning_rate": 4.158869911636876e-06,
2185
+ "loss": 1.8295,
2186
+ "step": 311
2187
+ },
2188
+ {
2189
+ "epoch": 0.5735294117647058,
2190
+ "grad_norm": 0.0,
2191
+ "learning_rate": 4.153335084586766e-06,
2192
+ "loss": 1.8681,
2193
+ "step": 312
2194
+ },
2195
+ {
2196
+ "epoch": 0.5753676470588235,
2197
+ "grad_norm": 0.0,
2198
+ "learning_rate": 4.147785816652569e-06,
2199
+ "loss": 1.6268,
2200
+ "step": 313
2201
+ },
2202
+ {
2203
+ "epoch": 0.5772058823529411,
2204
+ "grad_norm": 0.0,
2205
+ "learning_rate": 4.142222156303792e-06,
2206
+ "loss": 1.773,
2207
+ "step": 314
2208
+ },
2209
+ {
2210
+ "epoch": 0.5790441176470589,
2211
+ "grad_norm": 0.0,
2212
+ "learning_rate": 4.13664415213565e-06,
2213
+ "loss": 2.0425,
2214
+ "step": 315
2215
+ },
2216
+ {
2217
+ "epoch": 0.5808823529411765,
2218
+ "grad_norm": 0.0,
2219
+ "learning_rate": 4.131051852868643e-06,
2220
+ "loss": 1.8064,
2221
+ "step": 316
2222
+ },
2223
+ {
2224
+ "epoch": 0.5827205882352942,
2225
+ "grad_norm": 0.0,
2226
+ "learning_rate": 4.125445307348129e-06,
2227
+ "loss": 1.5052,
2228
+ "step": 317
2229
+ },
2230
+ {
2231
+ "epoch": 0.5845588235294118,
2232
+ "grad_norm": 0.0,
2233
+ "learning_rate": 4.119824564543901e-06,
2234
+ "loss": 1.7783,
2235
+ "step": 318
2236
+ },
2237
+ {
2238
+ "epoch": 0.5863970588235294,
2239
+ "grad_norm": 0.0,
2240
+ "learning_rate": 4.114189673549752e-06,
2241
+ "loss": 1.6945,
2242
+ "step": 319
2243
+ },
2244
+ {
2245
+ "epoch": 0.5882352941176471,
2246
+ "grad_norm": 0.0,
2247
+ "learning_rate": 4.108540683583057e-06,
2248
+ "loss": 1.7935,
2249
+ "step": 320
2250
+ },
2251
+ {
2252
+ "epoch": 0.5900735294117647,
2253
+ "grad_norm": 0.0,
2254
+ "learning_rate": 4.102877643984332e-06,
2255
+ "loss": 2.0515,
2256
+ "step": 321
2257
+ },
2258
+ {
2259
+ "epoch": 0.5919117647058824,
2260
+ "grad_norm": 0.0,
2261
+ "learning_rate": 4.097200604216811e-06,
2262
+ "loss": 1.7803,
2263
+ "step": 322
2264
+ },
2265
+ {
2266
+ "epoch": 0.59375,
2267
+ "grad_norm": 0.0,
2268
+ "learning_rate": 4.09150961386601e-06,
2269
+ "loss": 1.7374,
2270
+ "step": 323
2271
+ },
2272
+ {
2273
+ "epoch": 0.5955882352941176,
2274
+ "grad_norm": 0.0,
2275
+ "learning_rate": 4.085804722639293e-06,
2276
+ "loss": 1.6242,
2277
+ "step": 324
2278
+ },
2279
+ {
2280
+ "epoch": 0.5974264705882353,
2281
+ "grad_norm": 0.0,
2282
+ "learning_rate": 4.0800859803654436e-06,
2283
+ "loss": 1.8858,
2284
+ "step": 325
2285
+ },
2286
+ {
2287
+ "epoch": 0.5992647058823529,
2288
+ "grad_norm": 0.0,
2289
+ "learning_rate": 4.074353436994223e-06,
2290
+ "loss": 1.8843,
2291
+ "step": 326
2292
+ },
2293
+ {
2294
+ "epoch": 0.6011029411764706,
2295
+ "grad_norm": 0.0,
2296
+ "learning_rate": 4.068607142595939e-06,
2297
+ "loss": 1.4963,
2298
+ "step": 327
2299
+ },
2300
+ {
2301
+ "epoch": 0.6029411764705882,
2302
+ "grad_norm": 0.0,
2303
+ "learning_rate": 4.062847147361003e-06,
2304
+ "loss": 1.6638,
2305
+ "step": 328
2306
+ },
2307
+ {
2308
+ "epoch": 0.6047794117647058,
2309
+ "grad_norm": 0.0,
2310
+ "learning_rate": 4.0570735015994986e-06,
2311
+ "loss": 1.9207,
2312
+ "step": 329
2313
+ },
2314
+ {
2315
+ "epoch": 0.6066176470588235,
2316
+ "grad_norm": 0.0,
2317
+ "learning_rate": 4.0512862557407365e-06,
2318
+ "loss": 1.5746,
2319
+ "step": 330
2320
+ },
2321
+ {
2322
+ "epoch": 0.6084558823529411,
2323
+ "grad_norm": 0.0,
2324
+ "learning_rate": 4.045485460332815e-06,
2325
+ "loss": 1.8553,
2326
+ "step": 331
2327
+ },
2328
+ {
2329
+ "epoch": 0.6102941176470589,
2330
+ "grad_norm": 0.0,
2331
+ "learning_rate": 4.0396711660421825e-06,
2332
+ "loss": 1.8915,
2333
+ "step": 332
2334
+ },
2335
+ {
2336
+ "epoch": 0.6121323529411765,
2337
+ "grad_norm": 0.0,
2338
+ "learning_rate": 4.03384342365319e-06,
2339
+ "loss": 1.8034,
2340
+ "step": 333
2341
+ },
2342
+ {
2343
+ "epoch": 0.6139705882352942,
2344
+ "grad_norm": 0.0,
2345
+ "learning_rate": 4.02800228406765e-06,
2346
+ "loss": 1.9337,
2347
+ "step": 334
2348
+ },
2349
+ {
2350
+ "epoch": 0.6158088235294118,
2351
+ "grad_norm": 0.0,
2352
+ "learning_rate": 4.02214779830439e-06,
2353
+ "loss": 1.9172,
2354
+ "step": 335
2355
+ },
2356
+ {
2357
+ "epoch": 0.6176470588235294,
2358
+ "grad_norm": 0.0,
2359
+ "learning_rate": 4.016280017498812e-06,
2360
+ "loss": 1.5344,
2361
+ "step": 336
2362
+ },
2363
+ {
2364
+ "epoch": 0.6194852941176471,
2365
+ "grad_norm": 0.0,
2366
+ "learning_rate": 4.010398992902437e-06,
2367
+ "loss": 1.6145,
2368
+ "step": 337
2369
+ },
2370
+ {
2371
+ "epoch": 0.6213235294117647,
2372
+ "grad_norm": 0.0,
2373
+ "learning_rate": 4.004504775882467e-06,
2374
+ "loss": 1.6857,
2375
+ "step": 338
2376
+ },
2377
+ {
2378
+ "epoch": 0.6231617647058824,
2379
+ "grad_norm": 0.0,
2380
+ "learning_rate": 3.998597417921331e-06,
2381
+ "loss": 1.6453,
2382
+ "step": 339
2383
+ },
2384
+ {
2385
+ "epoch": 0.625,
2386
+ "grad_norm": 0.0,
2387
+ "learning_rate": 3.992676970616233e-06,
2388
+ "loss": 1.9115,
2389
+ "step": 340
2390
+ },
2391
+ {
2392
+ "epoch": 0.6268382352941176,
2393
+ "grad_norm": 0.0,
2394
+ "learning_rate": 3.98674348567871e-06,
2395
+ "loss": 1.7092,
2396
+ "step": 341
2397
+ },
2398
+ {
2399
+ "epoch": 0.6286764705882353,
2400
+ "grad_norm": 0.0,
2401
+ "learning_rate": 3.980797014934169e-06,
2402
+ "loss": 1.7614,
2403
+ "step": 342
2404
+ },
2405
+ {
2406
+ "epoch": 0.6305147058823529,
2407
+ "grad_norm": 0.0,
2408
+ "learning_rate": 3.974837610321445e-06,
2409
+ "loss": 1.6805,
2410
+ "step": 343
2411
+ },
2412
+ {
2413
+ "epoch": 0.6323529411764706,
2414
+ "grad_norm": 0.0,
2415
+ "learning_rate": 3.968865323892339e-06,
2416
+ "loss": 1.9099,
2417
+ "step": 344
2418
+ },
2419
+ {
2420
+ "epoch": 0.6341911764705882,
2421
+ "grad_norm": 0.0,
2422
+ "learning_rate": 3.962880207811168e-06,
2423
+ "loss": 1.5895,
2424
+ "step": 345
2425
+ },
2426
+ {
2427
+ "epoch": 0.6360294117647058,
2428
+ "grad_norm": 0.0,
2429
+ "learning_rate": 3.95688231435431e-06,
2430
+ "loss": 1.6966,
2431
+ "step": 346
2432
+ },
2433
+ {
2434
+ "epoch": 0.6378676470588235,
2435
+ "grad_norm": 0.0,
2436
+ "learning_rate": 3.950871695909744e-06,
2437
+ "loss": 1.6833,
2438
+ "step": 347
2439
+ },
2440
+ {
2441
+ "epoch": 0.6397058823529411,
2442
+ "grad_norm": 0.0,
2443
+ "learning_rate": 3.944848404976593e-06,
2444
+ "loss": 1.8615,
2445
+ "step": 348
2446
+ },
2447
+ {
2448
+ "epoch": 0.6415441176470589,
2449
+ "grad_norm": 0.0,
2450
+ "learning_rate": 3.93881249416467e-06,
2451
+ "loss": 1.93,
2452
+ "step": 349
2453
+ },
2454
+ {
2455
+ "epoch": 0.6433823529411765,
2456
+ "grad_norm": 0.0,
2457
+ "learning_rate": 3.932764016194013e-06,
2458
+ "loss": 1.8436,
2459
+ "step": 350
2460
+ },
2461
+ {
2462
+ "epoch": 0.6452205882352942,
2463
+ "grad_norm": 0.0,
2464
+ "learning_rate": 3.926703023894424e-06,
2465
+ "loss": 1.4891,
2466
+ "step": 351
2467
+ },
2468
+ {
2469
+ "epoch": 0.6470588235294118,
2470
+ "grad_norm": 0.0,
2471
+ "learning_rate": 3.920629570205014e-06,
2472
+ "loss": 2.0484,
2473
+ "step": 352
2474
+ },
2475
+ {
2476
+ "epoch": 0.6488970588235294,
2477
+ "grad_norm": 0.0,
2478
+ "learning_rate": 3.914543708173735e-06,
2479
+ "loss": 1.7981,
2480
+ "step": 353
2481
+ },
2482
+ {
2483
+ "epoch": 0.6507352941176471,
2484
+ "grad_norm": 0.0,
2485
+ "learning_rate": 3.90844549095692e-06,
2486
+ "loss": 1.8744,
2487
+ "step": 354
2488
+ },
2489
+ {
2490
+ "epoch": 0.6525735294117647,
2491
+ "grad_norm": 0.0,
2492
+ "learning_rate": 3.9023349718188155e-06,
2493
+ "loss": 1.9961,
2494
+ "step": 355
2495
+ },
2496
+ {
2497
+ "epoch": 0.6544117647058824,
2498
+ "grad_norm": 0.0,
2499
+ "learning_rate": 3.8962122041311155e-06,
2500
+ "loss": 1.8839,
2501
+ "step": 356
2502
+ },
2503
+ {
2504
+ "epoch": 0.65625,
2505
+ "grad_norm": 0.0,
2506
+ "learning_rate": 3.890077241372503e-06,
2507
+ "loss": 1.7395,
2508
+ "step": 357
2509
+ },
2510
+ {
2511
+ "epoch": 0.6580882352941176,
2512
+ "grad_norm": 0.0,
2513
+ "learning_rate": 3.883930137128175e-06,
2514
+ "loss": 1.6163,
2515
+ "step": 358
2516
+ },
2517
+ {
2518
+ "epoch": 0.6599264705882353,
2519
+ "grad_norm": 0.0,
2520
+ "learning_rate": 3.877770945089377e-06,
2521
+ "loss": 1.7127,
2522
+ "step": 359
2523
+ },
2524
+ {
2525
+ "epoch": 0.6617647058823529,
2526
+ "grad_norm": 0.0,
2527
+ "learning_rate": 3.871599719052931e-06,
2528
+ "loss": 1.6822,
2529
+ "step": 360
2530
+ },
2531
+ {
2532
+ "epoch": 0.6636029411764706,
2533
+ "grad_norm": 0.0,
2534
+ "learning_rate": 3.865416512920776e-06,
2535
+ "loss": 2.0061,
2536
+ "step": 361
2537
+ },
2538
+ {
2539
+ "epoch": 0.6654411764705882,
2540
+ "grad_norm": 0.0,
2541
+ "learning_rate": 3.859221380699482e-06,
2542
+ "loss": 1.4916,
2543
+ "step": 362
2544
+ },
2545
+ {
2546
+ "epoch": 0.6672794117647058,
2547
+ "grad_norm": 0.0,
2548
+ "learning_rate": 3.853014376499792e-06,
2549
+ "loss": 1.5192,
2550
+ "step": 363
2551
+ },
2552
+ {
2553
+ "epoch": 0.6691176470588235,
2554
+ "grad_norm": 0.0,
2555
+ "learning_rate": 3.846795554536141e-06,
2556
+ "loss": 1.8608,
2557
+ "step": 364
2558
+ },
2559
+ {
2560
+ "epoch": 0.6709558823529411,
2561
+ "grad_norm": 0.0,
2562
+ "learning_rate": 3.840564969126186e-06,
2563
+ "loss": 1.7084,
2564
+ "step": 365
2565
+ },
2566
+ {
2567
+ "epoch": 0.6727941176470589,
2568
+ "grad_norm": 0.0,
2569
+ "learning_rate": 3.834322674690329e-06,
2570
+ "loss": 1.6686,
2571
+ "step": 366
2572
+ },
2573
+ {
2574
+ "epoch": 0.6746323529411765,
2575
+ "grad_norm": 0.0,
2576
+ "learning_rate": 3.828068725751245e-06,
2577
+ "loss": 1.7066,
2578
+ "step": 367
2579
+ },
2580
+ {
2581
+ "epoch": 0.6764705882352942,
2582
+ "grad_norm": 0.0,
2583
+ "learning_rate": 3.8218031769334024e-06,
2584
+ "loss": 1.7413,
2585
+ "step": 368
2586
+ },
2587
+ {
2588
+ "epoch": 0.6783088235294118,
2589
+ "grad_norm": 0.0,
2590
+ "learning_rate": 3.81552608296259e-06,
2591
+ "loss": 1.9639,
2592
+ "step": 369
2593
+ },
2594
+ {
2595
+ "epoch": 0.6801470588235294,
2596
+ "grad_norm": 0.0,
2597
+ "learning_rate": 3.809237498665434e-06,
2598
+ "loss": 1.6569,
2599
+ "step": 370
2600
+ },
2601
+ {
2602
+ "epoch": 0.6819852941176471,
2603
+ "grad_norm": 0.0,
2604
+ "learning_rate": 3.8029374789689234e-06,
2605
+ "loss": 1.7029,
2606
+ "step": 371
2607
+ },
2608
+ {
2609
+ "epoch": 0.6838235294117647,
2610
+ "grad_norm": 0.0,
2611
+ "learning_rate": 3.7966260788999278e-06,
2612
+ "loss": 1.4536,
2613
+ "step": 372
2614
+ },
2615
+ {
2616
+ "epoch": 0.6856617647058824,
2617
+ "grad_norm": 0.0,
2618
+ "learning_rate": 3.7903033535847167e-06,
2619
+ "loss": 1.7632,
2620
+ "step": 373
2621
+ },
2622
+ {
2623
+ "epoch": 0.6875,
2624
+ "grad_norm": 0.0,
2625
+ "learning_rate": 3.7839693582484806e-06,
2626
+ "loss": 1.698,
2627
+ "step": 374
2628
+ },
2629
+ {
2630
+ "epoch": 0.6893382352941176,
2631
+ "grad_norm": 0.0,
2632
+ "learning_rate": 3.7776241482148452e-06,
2633
+ "loss": 1.6655,
2634
+ "step": 375
2635
+ },
2636
+ {
2637
+ "epoch": 0.6911764705882353,
2638
+ "grad_norm": 0.0,
2639
+ "learning_rate": 3.771267778905391e-06,
2640
+ "loss": 1.8655,
2641
+ "step": 376
2642
+ },
2643
+ {
2644
+ "epoch": 0.6930147058823529,
2645
+ "grad_norm": 0.0,
2646
+ "learning_rate": 3.7649003058391664e-06,
2647
+ "loss": 1.7093,
2648
+ "step": 377
2649
+ },
2650
+ {
2651
+ "epoch": 0.6948529411764706,
2652
+ "grad_norm": 0.0,
2653
+ "learning_rate": 3.7585217846322075e-06,
2654
+ "loss": 1.6746,
2655
+ "step": 378
2656
+ },
2657
+ {
2658
+ "epoch": 0.6966911764705882,
2659
+ "grad_norm": 0.0,
2660
+ "learning_rate": 3.7521322709970454e-06,
2661
+ "loss": 1.9697,
2662
+ "step": 379
2663
+ },
2664
+ {
2665
+ "epoch": 0.6985294117647058,
2666
+ "grad_norm": 0.0,
2667
+ "learning_rate": 3.745731820742227e-06,
2668
+ "loss": 2.0496,
2669
+ "step": 380
2670
+ },
2671
+ {
2672
+ "epoch": 0.7003676470588235,
2673
+ "grad_norm": 0.0,
2674
+ "learning_rate": 3.7393204897718194e-06,
2675
+ "loss": 1.8899,
2676
+ "step": 381
2677
+ },
2678
+ {
2679
+ "epoch": 0.7022058823529411,
2680
+ "grad_norm": 0.0,
2681
+ "learning_rate": 3.7328983340849324e-06,
2682
+ "loss": 1.9481,
2683
+ "step": 382
2684
+ },
2685
+ {
2686
+ "epoch": 0.7040441176470589,
2687
+ "grad_norm": 0.0,
2688
+ "learning_rate": 3.7264654097752173e-06,
2689
+ "loss": 1.8767,
2690
+ "step": 383
2691
+ },
2692
+ {
2693
+ "epoch": 0.7058823529411765,
2694
+ "grad_norm": 0.0,
2695
+ "learning_rate": 3.7200217730303865e-06,
2696
+ "loss": 1.7622,
2697
+ "step": 384
2698
+ },
2699
+ {
2700
+ "epoch": 0.7077205882352942,
2701
+ "grad_norm": 0.0,
2702
+ "learning_rate": 3.713567480131718e-06,
2703
+ "loss": 1.8596,
2704
+ "step": 385
2705
+ },
2706
+ {
2707
+ "epoch": 0.7095588235294118,
2708
+ "grad_norm": 0.0,
2709
+ "learning_rate": 3.7071025874535643e-06,
2710
+ "loss": 1.7558,
2711
+ "step": 386
2712
+ },
2713
+ {
2714
+ "epoch": 0.7113970588235294,
2715
+ "grad_norm": 0.0,
2716
+ "learning_rate": 3.7006271514628617e-06,
2717
+ "loss": 2.0891,
2718
+ "step": 387
2719
+ },
2720
+ {
2721
+ "epoch": 0.7132352941176471,
2722
+ "grad_norm": 0.0,
2723
+ "learning_rate": 3.694141228718634e-06,
2724
+ "loss": 1.5486,
2725
+ "step": 388
2726
+ },
2727
+ {
2728
+ "epoch": 0.7150735294117647,
2729
+ "grad_norm": 0.0,
2730
+ "learning_rate": 3.6876448758715028e-06,
2731
+ "loss": 1.6308,
2732
+ "step": 389
2733
+ },
2734
+ {
2735
+ "epoch": 0.7169117647058824,
2736
+ "grad_norm": 0.0,
2737
+ "learning_rate": 3.681138149663189e-06,
2738
+ "loss": 1.9086,
2739
+ "step": 390
2740
+ },
2741
+ {
2742
+ "epoch": 0.71875,
2743
+ "grad_norm": 0.0,
2744
+ "learning_rate": 3.6746211069260197e-06,
2745
+ "loss": 1.9397,
2746
+ "step": 391
2747
+ },
2748
+ {
2749
+ "epoch": 0.7205882352941176,
2750
+ "grad_norm": 0.0,
2751
+ "learning_rate": 3.6680938045824284e-06,
2752
+ "loss": 1.6673,
2753
+ "step": 392
2754
+ },
2755
+ {
2756
+ "epoch": 0.7224264705882353,
2757
+ "grad_norm": 0.0,
2758
+ "learning_rate": 3.661556299644462e-06,
2759
+ "loss": 1.7074,
2760
+ "step": 393
2761
+ },
2762
+ {
2763
+ "epoch": 0.7242647058823529,
2764
+ "grad_norm": 0.0,
2765
+ "learning_rate": 3.6550086492132804e-06,
2766
+ "loss": 1.298,
2767
+ "step": 394
2768
+ },
2769
+ {
2770
+ "epoch": 0.7261029411764706,
2771
+ "grad_norm": 0.0,
2772
+ "learning_rate": 3.6484509104786582e-06,
2773
+ "loss": 1.711,
2774
+ "step": 395
2775
+ },
2776
+ {
2777
+ "epoch": 0.7279411764705882,
2778
+ "grad_norm": 0.0,
2779
+ "learning_rate": 3.6418831407184856e-06,
2780
+ "loss": 1.5623,
2781
+ "step": 396
2782
+ },
2783
+ {
2784
+ "epoch": 0.7297794117647058,
2785
+ "grad_norm": 0.0,
2786
+ "learning_rate": 3.6353053972982676e-06,
2787
+ "loss": 1.7687,
2788
+ "step": 397
2789
+ },
2790
+ {
2791
+ "epoch": 0.7316176470588235,
2792
+ "grad_norm": 0.0,
2793
+ "learning_rate": 3.628717737670623e-06,
2794
+ "loss": 1.6687,
2795
+ "step": 398
2796
+ },
2797
+ {
2798
+ "epoch": 0.7334558823529411,
2799
+ "grad_norm": 0.0,
2800
+ "learning_rate": 3.6221202193747818e-06,
2801
+ "loss": 1.6686,
2802
+ "step": 399
2803
+ },
2804
+ {
2805
+ "epoch": 0.7352941176470589,
2806
+ "grad_norm": 0.0,
2807
+ "learning_rate": 3.6155129000360846e-06,
2808
+ "loss": 1.4463,
2809
+ "step": 400
2810
+ },
2811
+ {
2812
+ "epoch": 0.7371323529411765,
2813
+ "grad_norm": 0.0,
2814
+ "learning_rate": 3.6088958373654794e-06,
2815
+ "loss": 1.8492,
2816
+ "step": 401
2817
+ },
2818
+ {
2819
+ "epoch": 0.7389705882352942,
2820
+ "grad_norm": 0.0,
2821
+ "learning_rate": 3.602269089159013e-06,
2822
+ "loss": 1.7782,
2823
+ "step": 402
2824
+ },
2825
+ {
2826
+ "epoch": 0.7408088235294118,
2827
+ "grad_norm": 0.0,
2828
+ "learning_rate": 3.5956327132973313e-06,
2829
+ "loss": 1.7213,
2830
+ "step": 403
2831
+ },
2832
+ {
2833
+ "epoch": 0.7426470588235294,
2834
+ "grad_norm": 0.0,
2835
+ "learning_rate": 3.588986767745174e-06,
2836
+ "loss": 1.6712,
2837
+ "step": 404
2838
+ },
2839
+ {
2840
+ "epoch": 0.7444852941176471,
2841
+ "grad_norm": 0.0,
2842
+ "learning_rate": 3.5823313105508626e-06,
2843
+ "loss": 1.679,
2844
+ "step": 405
2845
+ },
2846
+ {
2847
+ "epoch": 0.7463235294117647,
2848
+ "grad_norm": 0.0,
2849
+ "learning_rate": 3.575666399845799e-06,
2850
+ "loss": 1.8439,
2851
+ "step": 406
2852
+ },
2853
+ {
2854
+ "epoch": 0.7481617647058824,
2855
+ "grad_norm": 0.0,
2856
+ "learning_rate": 3.568992093843956e-06,
2857
+ "loss": 2.0623,
2858
+ "step": 407
2859
+ },
2860
+ {
2861
+ "epoch": 0.75,
2862
+ "grad_norm": 0.0,
2863
+ "learning_rate": 3.5623084508413685e-06,
2864
+ "loss": 1.6133,
2865
+ "step": 408
2866
+ },
2867
+ {
2868
+ "epoch": 0.7518382352941176,
2869
+ "grad_norm": 0.0,
2870
+ "learning_rate": 3.555615529215623e-06,
2871
+ "loss": 1.8713,
2872
+ "step": 409
2873
+ },
2874
+ {
2875
+ "epoch": 0.7536764705882353,
2876
+ "grad_norm": 0.0,
2877
+ "learning_rate": 3.5489133874253516e-06,
2878
+ "loss": 1.8986,
2879
+ "step": 410
2880
+ },
2881
+ {
2882
+ "epoch": 0.7555147058823529,
2883
+ "grad_norm": 0.0,
2884
+ "learning_rate": 3.5422020840097173e-06,
2885
+ "loss": 1.6793,
2886
+ "step": 411
2887
+ },
2888
+ {
2889
+ "epoch": 0.7573529411764706,
2890
+ "grad_norm": 0.0,
2891
+ "learning_rate": 3.535481677587904e-06,
2892
+ "loss": 1.6225,
2893
+ "step": 412
2894
+ },
2895
+ {
2896
+ "epoch": 0.7591911764705882,
2897
+ "grad_norm": 0.0,
2898
+ "learning_rate": 3.5287522268586074e-06,
2899
+ "loss": 1.7254,
2900
+ "step": 413
2901
+ },
2902
+ {
2903
+ "epoch": 0.7610294117647058,
2904
+ "grad_norm": 0.0,
2905
+ "learning_rate": 3.5220137905995165e-06,
2906
+ "loss": 1.7691,
2907
+ "step": 414
2908
+ },
2909
+ {
2910
+ "epoch": 0.7628676470588235,
2911
+ "grad_norm": 0.0,
2912
+ "learning_rate": 3.515266427666806e-06,
2913
+ "loss": 1.7055,
2914
+ "step": 415
2915
+ },
2916
+ {
2917
+ "epoch": 0.7647058823529411,
2918
+ "grad_norm": 0.0,
2919
+ "learning_rate": 3.508510196994618e-06,
2920
+ "loss": 1.7593,
2921
+ "step": 416
2922
+ },
2923
+ {
2924
+ "epoch": 0.7665441176470589,
2925
+ "grad_norm": 0.0,
2926
+ "learning_rate": 3.50174515759455e-06,
2927
+ "loss": 1.7012,
2928
+ "step": 417
2929
+ },
2930
+ {
2931
+ "epoch": 0.7683823529411765,
2932
+ "grad_norm": 0.0,
2933
+ "learning_rate": 3.4949713685551377e-06,
2934
+ "loss": 1.887,
2935
+ "step": 418
2936
+ },
2937
+ {
2938
+ "epoch": 0.7702205882352942,
2939
+ "grad_norm": 0.0,
2940
+ "learning_rate": 3.488188889041341e-06,
2941
+ "loss": 1.7187,
2942
+ "step": 419
2943
+ },
2944
+ {
2945
+ "epoch": 0.7720588235294118,
2946
+ "grad_norm": 0.0,
2947
+ "learning_rate": 3.4813977782940234e-06,
2948
+ "loss": 1.8475,
2949
+ "step": 420
2950
+ },
2951
+ {
2952
+ "epoch": 0.7738970588235294,
2953
+ "grad_norm": 0.0,
2954
+ "learning_rate": 3.4745980956294396e-06,
2955
+ "loss": 1.6388,
2956
+ "step": 421
2957
+ },
2958
+ {
2959
+ "epoch": 0.7757352941176471,
2960
+ "grad_norm": 0.0,
2961
+ "learning_rate": 3.4677899004387134e-06,
2962
+ "loss": 1.9088,
2963
+ "step": 422
2964
+ },
2965
+ {
2966
+ "epoch": 0.7775735294117647,
2967
+ "grad_norm": 0.0,
2968
+ "learning_rate": 3.460973252187321e-06,
2969
+ "loss": 1.6816,
2970
+ "step": 423
2971
+ },
2972
+ {
2973
+ "epoch": 0.7794117647058824,
2974
+ "grad_norm": 0.0,
2975
+ "learning_rate": 3.4541482104145695e-06,
2976
+ "loss": 1.6671,
2977
+ "step": 424
2978
+ },
2979
+ {
2980
+ "epoch": 0.78125,
2981
+ "grad_norm": 0.0,
2982
+ "learning_rate": 3.447314834733081e-06,
2983
+ "loss": 1.6012,
2984
+ "step": 425
2985
+ },
2986
+ {
2987
+ "epoch": 0.7830882352941176,
2988
+ "grad_norm": 0.0,
2989
+ "learning_rate": 3.440473184828266e-06,
2990
+ "loss": 1.6968,
2991
+ "step": 426
2992
+ },
2993
+ {
2994
+ "epoch": 0.7849264705882353,
2995
+ "grad_norm": 0.0,
2996
+ "learning_rate": 3.433623320457809e-06,
2997
+ "loss": 1.5466,
2998
+ "step": 427
2999
+ },
3000
+ {
3001
+ "epoch": 0.7867647058823529,
3002
+ "grad_norm": 0.0,
3003
+ "learning_rate": 3.4267653014511405e-06,
3004
+ "loss": 1.8788,
3005
+ "step": 428
3006
+ },
3007
+ {
3008
+ "epoch": 0.7886029411764706,
3009
+ "grad_norm": 0.0,
3010
+ "learning_rate": 3.419899187708917e-06,
3011
+ "loss": 1.8398,
3012
+ "step": 429
3013
+ },
3014
+ {
3015
+ "epoch": 0.7904411764705882,
3016
+ "grad_norm": 0.0,
3017
+ "learning_rate": 3.4130250392024973e-06,
3018
+ "loss": 1.7668,
3019
+ "step": 430
3020
+ },
3021
+ {
3022
+ "epoch": 0.7922794117647058,
3023
+ "grad_norm": 0.0,
3024
+ "learning_rate": 3.4061429159734207e-06,
3025
+ "loss": 1.7916,
3026
+ "step": 431
3027
+ },
3028
+ {
3029
+ "epoch": 0.7941176470588235,
3030
+ "grad_norm": 0.0,
3031
+ "learning_rate": 3.3992528781328793e-06,
3032
+ "loss": 1.628,
3033
+ "step": 432
3034
+ },
3035
+ {
3036
+ "epoch": 0.7959558823529411,
3037
+ "grad_norm": 0.0,
3038
+ "learning_rate": 3.3923549858611958e-06,
3039
+ "loss": 1.6921,
3040
+ "step": 433
3041
+ },
3042
+ {
3043
+ "epoch": 0.7977941176470589,
3044
+ "grad_norm": 0.0,
3045
+ "learning_rate": 3.385449299407296e-06,
3046
+ "loss": 1.7011,
3047
+ "step": 434
3048
+ },
3049
+ {
3050
+ "epoch": 0.7996323529411765,
3051
+ "grad_norm": 0.0,
3052
+ "learning_rate": 3.378535879088182e-06,
3053
+ "loss": 1.6465,
3054
+ "step": 435
3055
+ },
3056
+ {
3057
+ "epoch": 0.8014705882352942,
3058
+ "grad_norm": 0.0,
3059
+ "learning_rate": 3.3716147852884073e-06,
3060
+ "loss": 1.7443,
3061
+ "step": 436
3062
+ },
3063
+ {
3064
+ "epoch": 0.8033088235294118,
3065
+ "grad_norm": 0.0,
3066
+ "learning_rate": 3.3646860784595512e-06,
3067
+ "loss": 1.7987,
3068
+ "step": 437
3069
+ },
3070
+ {
3071
+ "epoch": 0.8051470588235294,
3072
+ "grad_norm": 0.0,
3073
+ "learning_rate": 3.357749819119685e-06,
3074
+ "loss": 1.9102,
3075
+ "step": 438
3076
+ },
3077
+ {
3078
+ "epoch": 0.8069852941176471,
3079
+ "grad_norm": 0.0,
3080
+ "learning_rate": 3.3508060678528464e-06,
3081
+ "loss": 1.6303,
3082
+ "step": 439
3083
+ },
3084
+ {
3085
+ "epoch": 0.8088235294117647,
3086
+ "grad_norm": 0.0,
3087
+ "learning_rate": 3.3438548853085135e-06,
3088
+ "loss": 1.5065,
3089
+ "step": 440
3090
+ },
3091
+ {
3092
+ "epoch": 0.8106617647058824,
3093
+ "grad_norm": 0.0,
3094
+ "learning_rate": 3.3368963322010695e-06,
3095
+ "loss": 1.7563,
3096
+ "step": 441
3097
+ },
3098
+ {
3099
+ "epoch": 0.8125,
3100
+ "grad_norm": 0.0,
3101
+ "learning_rate": 3.329930469309276e-06,
3102
+ "loss": 1.6226,
3103
+ "step": 442
3104
+ },
3105
+ {
3106
+ "epoch": 0.8143382352941176,
3107
+ "grad_norm": 0.0,
3108
+ "learning_rate": 3.322957357475741e-06,
3109
+ "loss": 1.8419,
3110
+ "step": 443
3111
+ },
3112
+ {
3113
+ "epoch": 0.8161764705882353,
3114
+ "grad_norm": 0.0,
3115
+ "learning_rate": 3.315977057606388e-06,
3116
+ "loss": 1.7456,
3117
+ "step": 444
3118
+ },
3119
+ {
3120
+ "epoch": 0.8180147058823529,
3121
+ "grad_norm": 0.0,
3122
+ "learning_rate": 3.3089896306699233e-06,
3123
+ "loss": 1.9603,
3124
+ "step": 445
3125
+ },
3126
+ {
3127
+ "epoch": 0.8198529411764706,
3128
+ "grad_norm": 0.0,
3129
+ "learning_rate": 3.301995137697304e-06,
3130
+ "loss": 1.6238,
3131
+ "step": 446
3132
+ },
3133
+ {
3134
+ "epoch": 0.8216911764705882,
3135
+ "grad_norm": 0.0,
3136
+ "learning_rate": 3.2949936397812055e-06,
3137
+ "loss": 1.6546,
3138
+ "step": 447
3139
+ },
3140
+ {
3141
+ "epoch": 0.8235294117647058,
3142
+ "grad_norm": 0.0,
3143
+ "learning_rate": 3.287985198075484e-06,
3144
+ "loss": 1.5644,
3145
+ "step": 448
3146
+ },
3147
+ {
3148
+ "epoch": 0.8253676470588235,
3149
+ "grad_norm": 0.0,
3150
+ "learning_rate": 3.2809698737946494e-06,
3151
+ "loss": 1.9652,
3152
+ "step": 449
3153
+ },
3154
+ {
3155
+ "epoch": 0.8272058823529411,
3156
+ "grad_norm": 0.0,
3157
+ "learning_rate": 3.2739477282133253e-06,
3158
+ "loss": 1.6981,
3159
+ "step": 450
3160
+ },
3161
+ {
3162
+ "epoch": 0.8290441176470589,
3163
+ "grad_norm": 0.0,
3164
+ "learning_rate": 3.266918822665715e-06,
3165
+ "loss": 1.8254,
3166
+ "step": 451
3167
+ },
3168
+ {
3169
+ "epoch": 0.8308823529411765,
3170
+ "grad_norm": 0.0,
3171
+ "learning_rate": 3.259883218545065e-06,
3172
+ "loss": 1.5648,
3173
+ "step": 452
3174
+ },
3175
+ {
3176
+ "epoch": 0.8327205882352942,
3177
+ "grad_norm": 0.0,
3178
+ "learning_rate": 3.2528409773031322e-06,
3179
+ "loss": 1.649,
3180
+ "step": 453
3181
+ },
3182
+ {
3183
+ "epoch": 0.8345588235294118,
3184
+ "grad_norm": 0.0,
3185
+ "learning_rate": 3.2457921604496435e-06,
3186
+ "loss": 1.9707,
3187
+ "step": 454
3188
+ },
3189
+ {
3190
+ "epoch": 0.8363970588235294,
3191
+ "grad_norm": 0.0,
3192
+ "learning_rate": 3.2387368295517586e-06,
3193
+ "loss": 1.4134,
3194
+ "step": 455
3195
+ },
3196
+ {
3197
+ "epoch": 0.8382352941176471,
3198
+ "grad_norm": 0.0,
3199
+ "learning_rate": 3.231675046233536e-06,
3200
+ "loss": 1.834,
3201
+ "step": 456
3202
+ },
3203
+ {
3204
+ "epoch": 0.8400735294117647,
3205
+ "grad_norm": 0.0,
3206
+ "learning_rate": 3.22460687217539e-06,
3207
+ "loss": 1.7787,
3208
+ "step": 457
3209
+ },
3210
+ {
3211
+ "epoch": 0.8419117647058824,
3212
+ "grad_norm": 0.0,
3213
+ "learning_rate": 3.217532369113555e-06,
3214
+ "loss": 1.7776,
3215
+ "step": 458
3216
+ },
3217
+ {
3218
+ "epoch": 0.84375,
3219
+ "grad_norm": 0.0,
3220
+ "learning_rate": 3.2104515988395456e-06,
3221
+ "loss": 1.8862,
3222
+ "step": 459
3223
+ },
3224
+ {
3225
+ "epoch": 0.8455882352941176,
3226
+ "grad_norm": 0.0,
3227
+ "learning_rate": 3.2033646231996167e-06,
3228
+ "loss": 1.5536,
3229
+ "step": 460
3230
+ },
3231
+ {
3232
+ "epoch": 0.8474264705882353,
3233
+ "grad_norm": 0.0,
3234
+ "learning_rate": 3.196271504094223e-06,
3235
+ "loss": 1.6952,
3236
+ "step": 461
3237
+ },
3238
+ {
3239
+ "epoch": 0.8492647058823529,
3240
+ "grad_norm": 0.0,
3241
+ "learning_rate": 3.189172303477478e-06,
3242
+ "loss": 1.8626,
3243
+ "step": 462
3244
+ },
3245
+ {
3246
+ "epoch": 0.8511029411764706,
3247
+ "grad_norm": 0.0,
3248
+ "learning_rate": 3.182067083356616e-06,
3249
+ "loss": 1.7898,
3250
+ "step": 463
3251
+ },
3252
+ {
3253
+ "epoch": 0.8529411764705882,
3254
+ "grad_norm": 0.0,
3255
+ "learning_rate": 3.174955905791444e-06,
3256
+ "loss": 1.7797,
3257
+ "step": 464
3258
+ },
3259
+ {
3260
+ "epoch": 0.8547794117647058,
3261
+ "grad_norm": 0.0,
3262
+ "learning_rate": 3.1678388328938093e-06,
3263
+ "loss": 1.6529,
3264
+ "step": 465
3265
+ },
3266
+ {
3267
+ "epoch": 0.8566176470588235,
3268
+ "grad_norm": 0.0,
3269
+ "learning_rate": 3.1607159268270447e-06,
3270
+ "loss": 1.6602,
3271
+ "step": 466
3272
+ },
3273
+ {
3274
+ "epoch": 0.8584558823529411,
3275
+ "grad_norm": 0.0,
3276
+ "learning_rate": 3.153587249805438e-06,
3277
+ "loss": 1.6258,
3278
+ "step": 467
3279
+ },
3280
+ {
3281
+ "epoch": 0.8602941176470589,
3282
+ "grad_norm": 0.0,
3283
+ "learning_rate": 3.1464528640936797e-06,
3284
+ "loss": 1.7756,
3285
+ "step": 468
3286
+ },
3287
+ {
3288
+ "epoch": 0.8621323529411765,
3289
+ "grad_norm": 0.0,
3290
+ "learning_rate": 3.139312832006323e-06,
3291
+ "loss": 1.771,
3292
+ "step": 469
3293
+ },
3294
+ {
3295
+ "epoch": 0.8639705882352942,
3296
+ "grad_norm": 0.0,
3297
+ "learning_rate": 3.132167215907238e-06,
3298
+ "loss": 1.9377,
3299
+ "step": 470
3300
+ },
3301
+ {
3302
+ "epoch": 0.8658088235294118,
3303
+ "grad_norm": 0.0,
3304
+ "learning_rate": 3.12501607820907e-06,
3305
+ "loss": 1.7851,
3306
+ "step": 471
3307
+ },
3308
+ {
3309
+ "epoch": 0.8676470588235294,
3310
+ "grad_norm": 0.0,
3311
+ "learning_rate": 3.11785948137269e-06,
3312
+ "loss": 1.9384,
3313
+ "step": 472
3314
+ },
3315
+ {
3316
+ "epoch": 0.8694852941176471,
3317
+ "grad_norm": 0.0,
3318
+ "learning_rate": 3.1106974879066514e-06,
3319
+ "loss": 1.4842,
3320
+ "step": 473
3321
+ },
3322
+ {
3323
+ "epoch": 0.8713235294117647,
3324
+ "grad_norm": 0.0,
3325
+ "learning_rate": 3.1035301603666456e-06,
3326
+ "loss": 1.7289,
3327
+ "step": 474
3328
+ },
3329
+ {
3330
+ "epoch": 0.8731617647058824,
3331
+ "grad_norm": 0.0,
3332
+ "learning_rate": 3.0963575613549523e-06,
3333
+ "loss": 1.8963,
3334
+ "step": 475
3335
+ },
3336
+ {
3337
+ "epoch": 0.875,
3338
+ "grad_norm": 0.0,
3339
+ "learning_rate": 3.089179753519894e-06,
3340
+ "loss": 1.8238,
3341
+ "step": 476
3342
+ },
3343
+ {
3344
+ "epoch": 0.8768382352941176,
3345
+ "grad_norm": 0.0,
3346
+ "learning_rate": 3.0819967995552913e-06,
3347
+ "loss": 2.1243,
3348
+ "step": 477
3349
+ },
3350
+ {
3351
+ "epoch": 0.8786764705882353,
3352
+ "grad_norm": 0.0,
3353
+ "learning_rate": 3.074808762199911e-06,
3354
+ "loss": 1.7607,
3355
+ "step": 478
3356
+ },
3357
+ {
3358
+ "epoch": 0.8805147058823529,
3359
+ "grad_norm": 0.0,
3360
+ "learning_rate": 3.0676157042369213e-06,
3361
+ "loss": 1.7313,
3362
+ "step": 479
3363
+ },
3364
+ {
3365
+ "epoch": 0.8823529411764706,
3366
+ "grad_norm": 0.0,
3367
+ "learning_rate": 3.0604176884933422e-06,
3368
+ "loss": 1.6726,
3369
+ "step": 480
3370
+ },
3371
+ {
3372
+ "epoch": 0.8841911764705882,
3373
+ "grad_norm": 0.0,
3374
+ "learning_rate": 3.053214777839496e-06,
3375
+ "loss": 1.7602,
3376
+ "step": 481
3377
+ },
3378
+ {
3379
+ "epoch": 0.8860294117647058,
3380
+ "grad_norm": 0.0,
3381
+ "learning_rate": 3.0460070351884614e-06,
3382
+ "loss": 1.7777,
3383
+ "step": 482
3384
+ },
3385
+ {
3386
+ "epoch": 0.8878676470588235,
3387
+ "grad_norm": 0.0,
3388
+ "learning_rate": 3.0387945234955187e-06,
3389
+ "loss": 1.759,
3390
+ "step": 483
3391
+ },
3392
+ {
3393
+ "epoch": 0.8897058823529411,
3394
+ "grad_norm": 0.0,
3395
+ "learning_rate": 3.031577305757605e-06,
3396
+ "loss": 2.0917,
3397
+ "step": 484
3398
+ },
3399
+ {
3400
+ "epoch": 0.8915441176470589,
3401
+ "grad_norm": 0.0,
3402
+ "learning_rate": 3.024355445012761e-06,
3403
+ "loss": 1.7402,
3404
+ "step": 485
3405
+ },
3406
+ {
3407
+ "epoch": 0.8933823529411765,
3408
+ "grad_norm": 0.0,
3409
+ "learning_rate": 3.0171290043395823e-06,
3410
+ "loss": 1.9261,
3411
+ "step": 486
3412
+ },
3413
+ {
3414
+ "epoch": 0.8952205882352942,
3415
+ "grad_norm": 0.0,
3416
+ "learning_rate": 3.0098980468566663e-06,
3417
+ "loss": 1.6524,
3418
+ "step": 487
3419
+ },
3420
+ {
3421
+ "epoch": 0.8970588235294118,
3422
+ "grad_norm": 0.0,
3423
+ "learning_rate": 3.0026626357220623e-06,
3424
+ "loss": 1.8296,
3425
+ "step": 488
3426
+ },
3427
+ {
3428
+ "epoch": 0.8988970588235294,
3429
+ "grad_norm": 0.0,
3430
+ "learning_rate": 2.9954228341327192e-06,
3431
+ "loss": 1.8665,
3432
+ "step": 489
3433
+ },
3434
+ {
3435
+ "epoch": 0.9007352941176471,
3436
+ "grad_norm": 0.0,
3437
+ "learning_rate": 2.988178705323934e-06,
3438
+ "loss": 1.8146,
3439
+ "step": 490
3440
+ },
3441
+ {
3442
+ "epoch": 0.9025735294117647,
3443
+ "grad_norm": 0.0,
3444
+ "learning_rate": 2.9809303125688004e-06,
3445
+ "loss": 1.7391,
3446
+ "step": 491
3447
+ },
3448
+ {
3449
+ "epoch": 0.9044117647058824,
3450
+ "grad_norm": 0.0,
3451
+ "learning_rate": 2.9736777191776543e-06,
3452
+ "loss": 1.6417,
3453
+ "step": 492
3454
+ },
3455
+ {
3456
+ "epoch": 0.90625,
3457
+ "grad_norm": 0.0,
3458
+ "learning_rate": 2.966420988497522e-06,
3459
+ "loss": 1.8464,
3460
+ "step": 493
3461
+ },
3462
+ {
3463
+ "epoch": 0.9080882352941176,
3464
+ "grad_norm": 0.0,
3465
+ "learning_rate": 2.959160183911565e-06,
3466
+ "loss": 1.8636,
3467
+ "step": 494
3468
+ },
3469
+ {
3470
+ "epoch": 0.9099264705882353,
3471
+ "grad_norm": 0.0,
3472
+ "learning_rate": 2.9518953688385298e-06,
3473
+ "loss": 1.6568,
3474
+ "step": 495
3475
+ },
3476
+ {
3477
+ "epoch": 0.9117647058823529,
3478
+ "grad_norm": 0.0,
3479
+ "learning_rate": 2.9446266067321904e-06,
3480
+ "loss": 1.9179,
3481
+ "step": 496
3482
+ },
3483
+ {
3484
+ "epoch": 0.9136029411764706,
3485
+ "grad_norm": 0.0,
3486
+ "learning_rate": 2.9373539610807983e-06,
3487
+ "loss": 1.9894,
3488
+ "step": 497
3489
+ },
3490
+ {
3491
+ "epoch": 0.9154411764705882,
3492
+ "grad_norm": 0.0,
3493
+ "learning_rate": 2.930077495406523e-06,
3494
+ "loss": 1.8537,
3495
+ "step": 498
3496
+ },
3497
+ {
3498
+ "epoch": 0.9172794117647058,
3499
+ "grad_norm": 0.0,
3500
+ "learning_rate": 2.9227972732649e-06,
3501
+ "loss": 1.8176,
3502
+ "step": 499
3503
+ },
3504
+ {
3505
+ "epoch": 0.9191176470588235,
3506
+ "grad_norm": 0.0,
3507
+ "learning_rate": 2.915513358244276e-06,
3508
+ "loss": 1.7762,
3509
+ "step": 500
3510
+ },
3511
+ {
3512
+ "epoch": 0.9209558823529411,
3513
+ "grad_norm": 0.0,
3514
+ "learning_rate": 2.9082258139652536e-06,
3515
+ "loss": 1.7569,
3516
+ "step": 501
3517
+ },
3518
+ {
3519
+ "epoch": 0.9227941176470589,
3520
+ "grad_norm": 0.0,
3521
+ "learning_rate": 2.900934704080133e-06,
3522
+ "loss": 1.7657,
3523
+ "step": 502
3524
+ },
3525
+ {
3526
+ "epoch": 0.9246323529411765,
3527
+ "grad_norm": 0.0,
3528
+ "learning_rate": 2.893640092272357e-06,
3529
+ "loss": 1.7845,
3530
+ "step": 503
3531
+ },
3532
+ {
3533
+ "epoch": 0.9264705882352942,
3534
+ "grad_norm": 0.0,
3535
+ "learning_rate": 2.8863420422559577e-06,
3536
+ "loss": 1.4962,
3537
+ "step": 504
3538
+ },
3539
+ {
3540
+ "epoch": 0.9283088235294118,
3541
+ "grad_norm": 0.0,
3542
+ "learning_rate": 2.8790406177749985e-06,
3543
+ "loss": 1.6051,
3544
+ "step": 505
3545
+ },
3546
+ {
3547
+ "epoch": 0.9301470588235294,
3548
+ "grad_norm": 0.0,
3549
+ "learning_rate": 2.8717358826030158e-06,
3550
+ "loss": 1.8549,
3551
+ "step": 506
3552
+ },
3553
+ {
3554
+ "epoch": 0.9319852941176471,
3555
+ "grad_norm": 0.0,
3556
+ "learning_rate": 2.86442790054246e-06,
3557
+ "loss": 1.7021,
3558
+ "step": 507
3559
+ },
3560
+ {
3561
+ "epoch": 0.9338235294117647,
3562
+ "grad_norm": 0.0,
3563
+ "learning_rate": 2.8571167354241445e-06,
3564
+ "loss": 1.6309,
3565
+ "step": 508
3566
+ },
3567
+ {
3568
+ "epoch": 0.9356617647058824,
3569
+ "grad_norm": 0.0,
3570
+ "learning_rate": 2.849802451106685e-06,
3571
+ "loss": 1.77,
3572
+ "step": 509
3573
+ },
3574
+ {
3575
+ "epoch": 0.9375,
3576
+ "grad_norm": 0.0,
3577
+ "learning_rate": 2.84248511147594e-06,
3578
+ "loss": 1.7613,
3579
+ "step": 510
3580
+ },
3581
+ {
3582
+ "epoch": 0.9393382352941176,
3583
+ "grad_norm": 0.0,
3584
+ "learning_rate": 2.835164780444455e-06,
3585
+ "loss": 1.9886,
3586
+ "step": 511
3587
+ },
3588
+ {
3589
+ "epoch": 0.9411764705882353,
3590
+ "grad_norm": 0.0,
3591
+ "learning_rate": 2.8278415219509025e-06,
3592
+ "loss": 1.6941,
3593
+ "step": 512
3594
+ },
3595
+ {
3596
+ "epoch": 0.9430147058823529,
3597
+ "grad_norm": 0.0,
3598
+ "learning_rate": 2.8205153999595253e-06,
3599
+ "loss": 1.641,
3600
+ "step": 513
3601
+ },
3602
+ {
3603
+ "epoch": 0.9448529411764706,
3604
+ "grad_norm": 0.0,
3605
+ "learning_rate": 2.8131864784595788e-06,
3606
+ "loss": 1.8998,
3607
+ "step": 514
3608
+ },
3609
+ {
3610
+ "epoch": 0.9466911764705882,
3611
+ "grad_norm": 0.0,
3612
+ "learning_rate": 2.8058548214647674e-06,
3613
+ "loss": 1.7034,
3614
+ "step": 515
3615
+ },
3616
+ {
3617
+ "epoch": 0.9485294117647058,
3618
+ "grad_norm": 0.0,
3619
+ "learning_rate": 2.798520493012691e-06,
3620
+ "loss": 1.7346,
3621
+ "step": 516
3622
+ },
3623
+ {
3624
+ "epoch": 0.9503676470588235,
3625
+ "grad_norm": 0.0,
3626
+ "learning_rate": 2.7911835571642816e-06,
3627
+ "loss": 2.0461,
3628
+ "step": 517
3629
+ },
3630
+ {
3631
+ "epoch": 0.9522058823529411,
3632
+ "grad_norm": 0.0,
3633
+ "learning_rate": 2.783844078003245e-06,
3634
+ "loss": 1.7676,
3635
+ "step": 518
3636
+ },
3637
+ {
3638
+ "epoch": 0.9540441176470589,
3639
+ "grad_norm": 0.0,
3640
+ "learning_rate": 2.7765021196355023e-06,
3641
+ "loss": 1.592,
3642
+ "step": 519
3643
+ },
3644
+ {
3645
+ "epoch": 0.9558823529411765,
3646
+ "grad_norm": 0.0,
3647
+ "learning_rate": 2.76915774618863e-06,
3648
+ "loss": 1.5685,
3649
+ "step": 520
3650
+ },
3651
+ {
3652
+ "epoch": 0.9577205882352942,
3653
+ "grad_norm": 0.0,
3654
+ "learning_rate": 2.761811021811295e-06,
3655
+ "loss": 1.7379,
3656
+ "step": 521
3657
+ },
3658
+ {
3659
+ "epoch": 0.9595588235294118,
3660
+ "grad_norm": 0.0,
3661
+ "learning_rate": 2.754462010672701e-06,
3662
+ "loss": 1.9914,
3663
+ "step": 522
3664
+ },
3665
+ {
3666
+ "epoch": 0.9613970588235294,
3667
+ "grad_norm": 0.0,
3668
+ "learning_rate": 2.7471107769620258e-06,
3669
+ "loss": 1.8213,
3670
+ "step": 523
3671
+ },
3672
+ {
3673
+ "epoch": 0.9632352941176471,
3674
+ "grad_norm": 0.0,
3675
+ "learning_rate": 2.739757384887859e-06,
3676
+ "loss": 1.6564,
3677
+ "step": 524
3678
+ },
3679
+ {
3680
+ "epoch": 0.9650735294117647,
3681
+ "grad_norm": 0.0,
3682
+ "learning_rate": 2.732401898677642e-06,
3683
+ "loss": 1.8431,
3684
+ "step": 525
3685
+ },
3686
+ {
3687
+ "epoch": 0.9669117647058824,
3688
+ "grad_norm": 0.0,
3689
+ "learning_rate": 2.725044382577107e-06,
3690
+ "loss": 1.8911,
3691
+ "step": 526
3692
+ },
3693
+ {
3694
+ "epoch": 0.96875,
3695
+ "grad_norm": 0.0,
3696
+ "learning_rate": 2.7176849008497165e-06,
3697
+ "loss": 1.6735,
3698
+ "step": 527
3699
+ },
3700
+ {
3701
+ "epoch": 0.9705882352941176,
3702
+ "grad_norm": 0.0,
3703
+ "learning_rate": 2.7103235177761018e-06,
3704
+ "loss": 1.6467,
3705
+ "step": 528
3706
+ },
3707
+ {
3708
+ "epoch": 0.9724264705882353,
3709
+ "grad_norm": 0.0,
3710
+ "learning_rate": 2.702960297653501e-06,
3711
+ "loss": 1.7016,
3712
+ "step": 529
3713
+ },
3714
+ {
3715
+ "epoch": 0.9742647058823529,
3716
+ "grad_norm": 0.0,
3717
+ "learning_rate": 2.695595304795197e-06,
3718
+ "loss": 1.8497,
3719
+ "step": 530
3720
+ },
3721
+ {
3722
+ "epoch": 0.9761029411764706,
3723
+ "grad_norm": 0.0,
3724
+ "learning_rate": 2.688228603529959e-06,
3725
+ "loss": 1.9022,
3726
+ "step": 531
3727
+ },
3728
+ {
3729
+ "epoch": 0.9779411764705882,
3730
+ "grad_norm": 0.0,
3731
+ "learning_rate": 2.680860258201475e-06,
3732
+ "loss": 1.6943,
3733
+ "step": 532
3734
+ },
3735
+ {
3736
+ "epoch": 0.9797794117647058,
3737
+ "grad_norm": 0.0,
3738
+ "learning_rate": 2.6734903331677946e-06,
3739
+ "loss": 1.886,
3740
+ "step": 533
3741
+ },
3742
+ {
3743
+ "epoch": 0.9816176470588235,
3744
+ "grad_norm": 0.0,
3745
+ "learning_rate": 2.666118892800765e-06,
3746
+ "loss": 1.715,
3747
+ "step": 534
3748
+ },
3749
+ {
3750
+ "epoch": 0.9834558823529411,
3751
+ "grad_norm": 0.0,
3752
+ "learning_rate": 2.658746001485469e-06,
3753
+ "loss": 1.7098,
3754
+ "step": 535
3755
+ },
3756
+ {
3757
+ "epoch": 0.9852941176470589,
3758
+ "grad_norm": 0.0,
3759
+ "learning_rate": 2.651371723619661e-06,
3760
+ "loss": 1.6282,
3761
+ "step": 536
3762
+ },
3763
+ {
3764
+ "epoch": 0.9871323529411765,
3765
+ "grad_norm": 0.0,
3766
+ "learning_rate": 2.6439961236132083e-06,
3767
+ "loss": 1.8106,
3768
+ "step": 537
3769
+ },
3770
+ {
3771
+ "epoch": 0.9889705882352942,
3772
+ "grad_norm": 0.0,
3773
+ "learning_rate": 2.6366192658875256e-06,
3774
+ "loss": 1.95,
3775
+ "step": 538
3776
+ },
3777
+ {
3778
+ "epoch": 0.9908088235294118,
3779
+ "grad_norm": 0.0,
3780
+ "learning_rate": 2.629241214875013e-06,
3781
+ "loss": 1.5364,
3782
+ "step": 539
3783
+ },
3784
+ {
3785
+ "epoch": 0.9926470588235294,
3786
+ "grad_norm": 0.0,
3787
+ "learning_rate": 2.621862035018492e-06,
3788
+ "loss": 1.8866,
3789
+ "step": 540
3790
+ },
3791
+ {
3792
+ "epoch": 0.9944852941176471,
3793
+ "grad_norm": 0.0,
3794
+ "learning_rate": 2.6144817907706453e-06,
3795
+ "loss": 1.6631,
3796
+ "step": 541
3797
+ },
3798
+ {
3799
+ "epoch": 0.9963235294117647,
3800
+ "grad_norm": 0.0,
3801
+ "learning_rate": 2.607100546593453e-06,
3802
+ "loss": 1.7325,
3803
+ "step": 542
3804
+ },
3805
+ {
3806
+ "epoch": 0.9981617647058824,
3807
+ "grad_norm": 0.0,
3808
+ "learning_rate": 2.5997183669576264e-06,
3809
+ "loss": 1.6731,
3810
+ "step": 543
3811
+ },
3812
+ {
3813
+ "epoch": 1.0,
3814
+ "grad_norm": 0.0,
3815
+ "learning_rate": 2.59233531634205e-06,
3816
+ "loss": 1.481,
3817
+ "step": 544
3818
+ }
3819
+ ],
3820
+ "logging_steps": 1,
3821
+ "max_steps": 1088,
3822
+ "num_input_tokens_seen": 0,
3823
+ "num_train_epochs": 2,
3824
+ "save_steps": 272,
3825
+ "stateful_callbacks": {
3826
+ "TrainerControl": {
3827
+ "args": {
3828
+ "should_epoch_stop": false,
3829
+ "should_evaluate": false,
3830
+ "should_log": false,
3831
+ "should_save": true,
3832
+ "should_training_stop": false
3833
+ },
3834
+ "attributes": {}
3835
+ }
3836
+ },
3837
+ "total_flos": 4.898808838477578e+18,
3838
+ "train_batch_size": 8,
3839
+ "trial_name": null,
3840
+ "trial_params": null
3841
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1564f8e6b5aefcd1866b24352506e04d1241e3ae7f96391b16acb550bff0f319
3
+ size 7160