--- library_name: transformers tags: - unsloth - trl - sft --- # Model Card: Custom LLaMA-3 Model with 4-bit Quantization ## Model Details - **Architecture:** LoRA (Low-Rank Adaptation) - **Quantization:** 4-bit ## Model Description This is a custom version of the LLaMA-3 language model trained with 4-bit quantization. The model uses LoRA (Low-Rank Adaptation) for efficient fine-tuning, allowing for reduced memory usage and faster training times without significant loss in performance. ## Training Configuration The model was trained using the following configuration: - **Learning Rate:** 2e-4 - **Optimizer:** AdamW (8-bit) - **Weight Decay:** 0.01 - **LR Scheduler:** Linear - **Mixed Precision:** FP16/BF16 (depending on hardware support) ## LoRA Configuration The model uses LoRA for efficient parameter adaptation with the following settings: - **Rank (r):** 16 - **Target Modules:** `["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]` - **LoRA Alpha:** 16 ## Training Dataset - **Dataset:** Custom dataset containing Turkish text data - **Max Sequence Length:** 1024 ## Usage To use this model, you can load it using the Hugging Face `transformers` library: ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("erythropygia/LLAMA3-8B-Turkish-4bit-Quantized") model = AutoModelForCausalLM.from_pretrained("erythropygia/LLAMA3-8B-Turkish-4bit-Quantized", low_cpu_mem_usage=True, load_in_4bit=True) prompt_format = """Aşağıda bir görevi tanımlayan bir talimat ve daha fazla bağlam sağlayan bir girdi bulunmaktadır. Talebi uygun şekilde tamamlayan bir yanıt yazın. ### Instruction: {} ### Input: {} ### Response: {}""" inputs = tokenizer( [ prompt_format.format( """, # instruction "", # input "", # output - leave this blank for generation! ) ], return_tensors = "pt").to("cuda") from transformers import TextStreamer text_streamer = TextStreamer(tokenizer) _ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 512, do_sample=True, temperature=0.75, top_k=50, top_p=0.9, repetition_penalty=1.1) ``` ## Performance - **Training Loss::** 1.385300 - **Evaluation Metrics:** To be updated based on evaluation results - **Limitations and Biases:** This model inherits biases present in the training data. It is important to evaluate the model thoroughly for your specific use case and consider any ethical implications of its deployment.