--- library_name: peft license: apache-2.0 base_model: OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5 tags: - axolotl - generated_from_trainer model-index: - name: f6e5e65a-341f-40c5-9e3f-873cee5c85ac results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: qlora auto_resume_from_checkpoints: true base_model: OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5 bf16: auto chat_template: llama3 dataloader_num_workers: 12 dataset_prepared_path: null datasets: - data_files: - 05eaf15988462a86_train_data.json ds_type: json format: custom path: /workspace/input_data/05eaf15988462a86_train_data.json type: field_instruction: question field_output: query format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 3 eval_max_new_tokens: 128 eval_steps: 100 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: error577/f6e5e65a-341f-40c5-9e3f-873cee5c85ac hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: null micro_batch_size: 1 mlflow_experiment_name: /tmp/05eaf15988462a86_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch_4bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 128 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.005 wandb_entity: null wandb_mode: online wandb_name: 1a9999e5-c0b6-4897-81e0-b48135a42da3 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 1a9999e5-c0b6-4897-81e0-b48135a42da3 warmup_steps: 30 weight_decay: 0.0 xformers_attention: null ```

# f6e5e65a-341f-40c5-9e3f-873cee5c85ac This model is a fine-tuned version of [OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5](https://huggingface.co/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5082 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_TORCH_4BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 30 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0006 | 1 | 2.8643 | | 3.9097 | 0.0572 | 100 | 0.7509 | | 2.1421 | 0.1143 | 200 | 0.7648 | | 2.7715 | 0.1715 | 300 | 0.6629 | | 1.8035 | 0.2286 | 400 | 0.5600 | | 1.9732 | 0.2858 | 500 | 0.6014 | | 2.6536 | 0.3430 | 600 | 0.4555 | | 1.6998 | 0.4001 | 700 | 0.4196 | | 1.4222 | 0.4573 | 800 | 0.4635 | | 1.6247 | 0.5144 | 900 | 0.4698 | | 2.3622 | 0.5716 | 1000 | 0.5082 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1