erayalp commited on
Commit
243f180
·
verified ·
1 Parent(s): 1e35ec2

docs: create README.md

Browse files
Files changed (1) hide show
  1. README.md +51 -0
README.md ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ license_link: https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct/blob/main/LICENSE
4
+ language:
5
+ - tr
6
+ - en
7
+ datasets:
8
+ - erayalp/medium_turkish_math_reasoning
9
+ base_model:
10
+ - erayalp/qwen2.5-0.5b-instruct-sft-v1-tr-math-easy
11
+ pipeline_tag: text-generation
12
+ library_name: transformers
13
+ ---
14
+ ## Objective
15
+ This model is the **second phase** of a multi-stage training pipeline designed to improve the Turkish mathematical reasoning capabilities of the compact [Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) model.
16
+
17
+ Starting from [`erayalp/qwen2.5-0.5b-instruct-sft-v1-tr-math-easy`](https://huggingface.co/erayalp/qwen2.5-0.5b-instruct-sft-v1-tr-math-easy), which was fine-tuned on simple Turkish math problems, this version continues training using **moderately difficult** examples to improve the model’s step-by-step reasoning and generalization before advancing to full-complexity GSM8K-TR tasks.
18
+
19
+ #### This model is intended for:
20
+ - Research on curriculum learning in small models
21
+ - Evaluating Turkish math reasoning tasks of moderate complexity
22
+
23
+ ### Limitations
24
+ - Still not robust on **multi-step, abstract**, or **edge-case** problems.
25
+ - May hallucinate or give overconfident answers to complex prompts.
26
+ - Prompt sensitivity and reasoning depth are **in progress** — expect improvements in later phases.
27
+
28
+ ### Roadmap
29
+ 1. ~~Phase 1: SFT with basic arithmatic and math problems~~
30
+ 2. **Phase 2: SFT with moderately difficult math problems**
31
+ 3. Phase 3: SFT with full-scale GSM8K-TR complexity
32
+ 4. Phase 4: GRPO-based training to optimize multi-step reasoning and reduce hallucinations
33
+
34
+ ## How to Use
35
+
36
+ You can easily run inference using the Transformers library:
37
+
38
+ ```python
39
+ from transformers import AutoTokenizer, AutoModelForCausalLM
40
+ import torch
41
+ model_name = "erayalp/qwen2.5-0.5b-instruct-sft-v2-tr-math-medium"
42
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
43
+ model = AutoModelForCausalLM.from_pretrained(
44
+ model_name,
45
+ torch_dtype="auto",
46
+ device_map="auto"
47
+ )
48
+ prompt = "Ali’nin 3 kalemi vardı. 2 kalem daha aldı. Ali’nin şimdi kaç kalemi var?"
49
+ inputs = tokenizer(prompt, return_tensors="pt")
50
+ output = model.generate(**inputs, max_new_tokens=256)
51
+ print(tokenizer.decode(output[0], skip_special_tokens=True))