File size: 4,489 Bytes
9700d2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import torch
import torch.nn as nn 
import torch.nn.functional as F 

from typing import Tuple, Optional, List
from dataclasses import dataclass

from transformers import PreTrainedModel
from transformers.utils import ModelOutput

from .configuration_compression import CompressionConfig

def cosine_pairwise(embeddings):
    return F.cosine_similarity(embeddings.unsqueeze(1), embeddings.unsqueeze(0), dim=2)

def cov(tensor, rowvar=True, bias=False):
    """Estimate a covariance matrix (np.cov)"""
    tensor = tensor if rowvar else tensor.transpose(-1, -2)
    tensor = tensor - tensor.mean(dim=-1, keepdim=True)
    factor = 1 / (tensor.shape[-1] - int(not bool(bias)))
    return factor * tensor @ tensor.transpose(-1, -2).conj()

def remove_diag(x):
    n = x.shape[0]
    return x.masked_select(~torch.eye(n, dtype=bool, device=x.device)).view(n, n - 1)

def corrcoef(tensor, rowvar=True):
    """Get Pearson product-moment correlation coefficients (np.corrcoef)"""
    covariance = cov(tensor, rowvar=rowvar)
    variance = covariance.diagonal(0, -1, -2)
    if variance.is_complex():
        variance = variance.real
    stddev = variance.sqrt()
    covariance /= stddev.unsqueeze(-1)
    covariance /= stddev.unsqueeze(-2)
    if covariance.is_complex():
        covariance.real.clip_(-1, 1)
        covariance.imag.clip_(-1, 1)
    else:
        covariance.clip_(-1, 1)
    return covariance

def compute_correlation(base_sims, compressed_sims, rm_diag=True):
    if rm_diag:
        base_sims = remove_diag(base_sims)
        compressed_sims = remove_diag(compressed_sims)

    inputs = torch.stack([base_sims, 
                          compressed_sims], dim=1)
    return (1-corrcoef(inputs)[:, 0, 1]).mean()

def loss_function(base_sims, compressed_sims, k_vals):
    outputs =  [compute_correlation(base_sims, compressed_sims)]

    if k_vals:
        base_ranks = base_sims.argsort(-1, descending=True)[:, 1:]
        n = base_ranks.shape[1]
        for k in k_vals:
            base_sims_k = torch.gather(base_sims, 1, base_ranks[:, :k])
            compressed_sims_k = torch.gather(compressed_sims, 1, base_ranks[:, :k])
            outputs.append(compute_correlation(base_sims_k, compressed_sims_k, rm_diag=False))

    return torch.stack(outputs).unsqueeze(0)

class FeedForward(nn.Module):
    def __init__(self, d_in, d_out):
        super().__init__()
        self.fc1 = nn.Linear(d_in, d_out*2)
        self.fc2 = nn.Linear(d_out, d_out)
        
    def forward(self, x):
        x = self.fc1(x)
        x1, x2 = x.chunk(2, dim=-1)
        x = self.fc2(F.silu(x1) * x2)
        return x

class CompressionHead(nn.Module):
    def __init__(self, d_in, d_out, dropout=0.1):
        super().__init__()
        self.ff = FeedForward(d_in, d_out)
        self.skip = nn.Linear(d_in, d_out)
        self.dropout = nn.Dropout(dropout)
        
    def forward(self, x):
        x = self.dropout(x)
        x = self.ff(x) + self.skip(x)
        return x

@dataclass
class CompressionModelOutput(ModelOutput):
    loss: Optional[torch.FloatTensor] = None
    losses: Optional[List[torch.FloatTensor]] = None
    base_embedding: Optional[torch.FloatTensor] = None
    compressed_embeddings: Optional[List[torch.FloatTensor]] = None

class CompressionModel(PreTrainedModel):
    config_class = CompressionConfig
    def __init__(self, config):
        super().__init__(config)
        self.heads = nn.ModuleList([CompressionHead(config.input_size, i, config.dropout)
                      for i in config.compression_sizes])
        
    def forward(self, embedding, compute_loss=True, return_dict=True):
        outputs = []
        losses = None

        if compute_loss:
            losses = []
            emb_sims = cosine_pairwise(embedding)

        for head in self.heads:
            compressed_embedding = head(embedding)
            outputs.append(compressed_embedding)

            if compute_loss:
                comp_sims = cosine_pairwise(compressed_embedding)
                loss = loss_function(emb_sims, comp_sims, self.config.loss_k_vals)
                losses.append(loss)

        loss = torch.cat(losses).sum()

        if not return_dict:
            return (loss, losses, embedding, outputs)
        
        return CompressionModelOutput(loss=loss,
                                        losses=losses,
                                        base_embedding=embedding,
                                        compressed_embeddings=outputs)