embanEMB/Model-Bio_clinicalBERT-frozen_embeddings-30-frozen_embedding
Browse files
README.md
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: emilyalsentzer/Bio_ClinicalBERT
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: Bio_clinicalBERT-frozen_embeddings-30
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# Bio_clinicalBERT-frozen_embeddings-30
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 1.2236
|
22 |
+
- Accuracy: 0.5153
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 0.03
|
42 |
+
- train_batch_size: 16
|
43 |
+
- eval_batch_size: 16
|
44 |
+
- seed: 42
|
45 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 30
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
53 |
+
| No log | 1.0 | 115 | 2.2869 | 0.3712 |
|
54 |
+
| No log | 2.0 | 230 | 2.0574 | 0.3930 |
|
55 |
+
| No log | 3.0 | 345 | 3.3676 | 0.3886 |
|
56 |
+
| No log | 4.0 | 460 | 2.4398 | 0.3581 |
|
57 |
+
| 2.2747 | 5.0 | 575 | 1.8722 | 0.4410 |
|
58 |
+
| 2.2747 | 6.0 | 690 | 2.1077 | 0.3231 |
|
59 |
+
| 2.2747 | 7.0 | 805 | 1.9363 | 0.5109 |
|
60 |
+
| 2.2747 | 8.0 | 920 | 3.5410 | 0.2882 |
|
61 |
+
| 2.0667 | 9.0 | 1035 | 2.8723 | 0.2795 |
|
62 |
+
| 2.0667 | 10.0 | 1150 | 2.0155 | 0.4148 |
|
63 |
+
| 2.0667 | 11.0 | 1265 | 2.4170 | 0.4105 |
|
64 |
+
| 2.0667 | 12.0 | 1380 | 2.8414 | 0.3188 |
|
65 |
+
| 2.0667 | 13.0 | 1495 | 1.9712 | 0.4367 |
|
66 |
+
| 1.9756 | 14.0 | 1610 | 1.8535 | 0.4323 |
|
67 |
+
| 1.9756 | 15.0 | 1725 | 1.8735 | 0.5109 |
|
68 |
+
| 1.9756 | 16.0 | 1840 | 1.7002 | 0.4629 |
|
69 |
+
| 1.9756 | 17.0 | 1955 | 1.4065 | 0.4716 |
|
70 |
+
| 1.7396 | 18.0 | 2070 | 2.0771 | 0.3799 |
|
71 |
+
| 1.7396 | 19.0 | 2185 | 2.8953 | 0.3100 |
|
72 |
+
| 1.7396 | 20.0 | 2300 | 1.5128 | 0.4847 |
|
73 |
+
| 1.7396 | 21.0 | 2415 | 1.3819 | 0.4629 |
|
74 |
+
| 1.5953 | 22.0 | 2530 | 1.7965 | 0.4236 |
|
75 |
+
| 1.5953 | 23.0 | 2645 | 1.4167 | 0.4847 |
|
76 |
+
| 1.5953 | 24.0 | 2760 | 1.3443 | 0.4891 |
|
77 |
+
| 1.5953 | 25.0 | 2875 | 1.5971 | 0.4410 |
|
78 |
+
| 1.5953 | 26.0 | 2990 | 1.4340 | 0.4847 |
|
79 |
+
| 1.3758 | 27.0 | 3105 | 1.3012 | 0.5022 |
|
80 |
+
| 1.3758 | 28.0 | 3220 | 1.3027 | 0.4978 |
|
81 |
+
| 1.3758 | 29.0 | 3335 | 1.3025 | 0.4803 |
|
82 |
+
| 1.3758 | 30.0 | 3450 | 1.2236 | 0.5153 |
|
83 |
+
|
84 |
+
|
85 |
+
### Framework versions
|
86 |
+
|
87 |
+
- Transformers 4.48.3
|
88 |
+
- Pytorch 2.5.1+cu124
|
89 |
+
- Tokenizers 0.21.0
|