eli4s commited on
Commit
ab61af7
·
1 Parent(s): e921045

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -2
README.md CHANGED
@@ -19,12 +19,12 @@ model = BertForMaskedLM.from_pretrained(model_name)
19
  tokenizer = BertTokenizer.from_pretrained(model_name)
20
  ````
21
 
22
- To use it on a sentence :
23
 
24
  ````python
25
  import torch
26
 
27
- sentence = "The goal of life is [MASK]."
28
 
29
  encoded_inputs = tokenizer([sentence], padding='longest')
30
  input_ids = torch.tensor(encoded_inputs['input_ids'])
@@ -37,3 +37,17 @@ predicted_token = tokenizer.decode(masked_token)
37
 
38
  print(predicted_token)
39
  ````
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  tokenizer = BertTokenizer.from_pretrained(model_name)
20
  ````
21
 
22
+ To use it as a masked language model :
23
 
24
  ````python
25
  import torch
26
 
27
+ sentence = "Let's have a [MASK]."
28
 
29
  encoded_inputs = tokenizer([sentence], padding='longest')
30
  input_ids = torch.tensor(encoded_inputs['input_ids'])
 
37
 
38
  print(predicted_token)
39
  ````
40
+
41
+ Or we can also predict the n most relevant predictions :
42
+
43
+ ````python
44
+ top_n = 5
45
+
46
+ vocab_size = model.config.vocab_size
47
+ logits = output['logits'][0][mask_index].tolist()
48
+ top_tokens = sorted(list(range(vocab_size)), key=lambda i:logits[i], reverse=True)[:top_n]
49
+
50
+ tokenizer.decode(top_tokens)
51
+ ````
52
+
53
+