Improve language tag
Browse filesHi! As the model is multilingual, this is a PR to add other languages than English to the language tag to improve the referencing. Note that 29 languages are announced in the README, but only 13 are explicitly listed. I was therefore only able to add these 13 languages.
README.md
CHANGED
@@ -1,58 +1,68 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
pipeline_tag: text-generation
|
4 |
-
language:
|
5 |
-
-
|
6 |
-
-
|
7 |
-
-
|
8 |
-
|
9 |
-
-
|
10 |
-
|
11 |
-
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
-
|
16 |
-
-
|
17 |
-
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
model
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
```
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
pipeline_tag: text-generation
|
4 |
+
language:
|
5 |
+
- zho
|
6 |
+
- eng
|
7 |
+
- fra
|
8 |
+
- spa
|
9 |
+
- por
|
10 |
+
- deu
|
11 |
+
- ita
|
12 |
+
- rus
|
13 |
+
- jpn
|
14 |
+
- kor
|
15 |
+
- vie
|
16 |
+
- tha
|
17 |
+
- ara
|
18 |
+
base_model:
|
19 |
+
- Qwen/Qwen2.5-7B-Instruct
|
20 |
+
tags:
|
21 |
+
- qwen2.5
|
22 |
+
---
|
23 |
+
|
24 |
+
### theqwenmoe
|
25 |
+
- 18.3B parametrs
|
26 |
+
- English & Russian
|
27 |
+
- Math & Logic
|
28 |
+
- Code: Python, Javascript, Java, PHP, C++, C#, ...
|
29 |
+
|
30 |
+
This is experimental model. Can be bugs and various problems.
|
31 |
+
|
32 |
+
Made with mergekit and unsloth apps by ehristoforu.
|
33 |
+
|
34 |
+
Code usage example:
|
35 |
+
```py
|
36 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
37 |
+
|
38 |
+
model_name = "ehristoforu/theqwenmoe"
|
39 |
+
|
40 |
+
model = AutoModelForCausalLM.from_pretrained(
|
41 |
+
model_name,
|
42 |
+
torch_dtype="auto",
|
43 |
+
device_map="auto"
|
44 |
+
)
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
46 |
+
|
47 |
+
prompt = "Give me a short introduction to large language model."
|
48 |
+
messages = [
|
49 |
+
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
|
50 |
+
{"role": "user", "content": prompt}
|
51 |
+
]
|
52 |
+
text = tokenizer.apply_chat_template(
|
53 |
+
messages,
|
54 |
+
tokenize=False,
|
55 |
+
add_generation_prompt=True
|
56 |
+
)
|
57 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
58 |
+
|
59 |
+
generated_ids = model.generate(
|
60 |
+
**model_inputs,
|
61 |
+
max_new_tokens=512
|
62 |
+
)
|
63 |
+
generated_ids = [
|
64 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
65 |
+
]
|
66 |
+
|
67 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
68 |
```
|